ESP8266-RGB5m/NeoPatterns.cpp

1178 lines
31 KiB
C++
Raw Permalink Normal View History

2018-04-08 11:48:58 +00:00
#include "NeoPatterns.h"
NeoPatterns::NeoPatterns(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)(), void (*callbackDebug)(String)) :
Adafruit_NeoPixel(pixels, pin, type)
{
OnComplete = callback;
OnDebugOutput = callbackDebug;
//Allocate a zero initialized block of memory big enough to hold "pixels" uint8_t.
pixelR = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelG = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelB = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelR_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelG_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelB_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
// Max. MAX_DROPS Drops: Location
drop = ( uint8_t* ) calloc (MAX_DROPS, sizeof( uint8_t ) );
// Max. MAX_DROPS Drops: Brightness (Default to 0)
dropBrightness = ( uint8_t* ) calloc (MAX_DROPS, sizeof( uint8_t ) );
// Max. MAX_RINGS Rings: Location
ring = ( uint8_t* ) calloc (MAX_RINGS, sizeof( uint8_t ) );
// Max. MAX_RINGS Rings: Brightness (Default to 0)
ringBrightness = ( uint8_t* ) calloc (MAX_RINGS, sizeof( uint8_t ) );
ringDistance = ( uint8_t* ) calloc (MAX_RINGS, sizeof( uint8_t ) );
}
void NeoPatterns::Update() {
if ((millis() - lastUpdate) > Interval) // time to update
{
// OnDebugOutput(String("Updating at " ) + String(millis()));
lastUpdate = millis();
switch (ActivePattern)
{
case RAINBOW_CYCLE:
RainbowCycleUpdate();
break;
case THEATER_CHASE:
TheaterChaseUpdate();
break;
case BVB:
BVBChaseUpdate();
break;
case COLOR_WIPE:
ColorWipeUpdate();
break;
case SCANNER:
ScannerUpdate();
break;
case FADE:
FadeUpdate();
break;
case RANDOM_FADE:
RandomFadeUpdate();
break;
case RANDOM_FADE_SINGLE:
RandomFadeSingleUpdate();
break;
case SMOOTH:
SmoothUpdate();
break;
case ICON:
IconUpdate();
break;
case PLASMA:
PlasmaUpdate();
break;
case FILL:
break;
case RANDOM:
break;
case FIRE:
FireUpdate();
break;
case FIREWORKS:
FireworksUpdate();
break;
case DROP:
DropUpdate();
break;
case RINGS:
RingsUpdate();
break;
case SCANNER_RANDOM:
ScannerRandomUpdate();
break;
case NONE:
break;
default:
break;
}
} else {
delay(1);
// Serial.print(".");
}
}
void NeoPatterns::Increment()
{
// OnDebugOutput(String(Index) + " / " + String(TotalSteps));
if (Direction == FORWARD)
{
Index++;
if (Index >= TotalSteps)
{
Index = 0;
if (OnComplete != NULL)
{
OnComplete(); // call the completion callback
}
}
}
else // Direction == REVERSE
{
--Index;
if (Index <= 0)
{
Index = TotalSteps - 1;
if (OnComplete != NULL)
{
OnComplete(); // call the completion callback
}
}
}
}
void NeoPatterns::Reverse() {
if (Direction == FORWARD)
{
Direction = REVERSE;
// Index = TotalSteps - 1;
}
else
{
Direction = FORWARD;
// Index = numPixels()-TotalSteps;
}
}
void NeoPatterns::None(uint8_t interval) {
Interval = interval;
if (ActivePattern != NONE) {
clear();
show();
}
ActivePattern = NONE;
}
/****************** Effects ******************/
void NeoPatterns::RainbowCycle(uint8_t interval, direction dir) {
ActivePattern = RAINBOW_CYCLE;
Interval = interval;
TotalSteps = 255;
Index = 0;
Direction = dir;
}
void NeoPatterns::RainbowCycleUpdate()
{
for (int i = 0; i < numPixels(); i++)
{
setPixelColor(i, Wheel(((i * 256 / numPixels()) + Index) & 255));
}
show();
Increment();
}
void NeoPatterns::TheaterChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir) {
ActivePattern = THEATER_CHASE;
Interval = interval;
TotalSteps = numPixels();
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
void NeoPatterns::TheaterChaseUpdate() {
for (int i = 0; i < numPixels(); i++)
{
if ((i + Index) % 8 == 0)
{
setPixelColor(i, Color1);
}
else
{
// Reduce brightness for the base pixels
float _brightness = 0.2;
uint8_t _r = (uint8_t)(Color2 >> 16);
uint8_t _g = (uint8_t)(Color2 >> 8);
uint8_t _b = (uint8_t)Color2;
setPixelColor(i, Color(_r * _brightness, _g * _brightness, _b * _brightness));
}
}
show();
Increment();
}
void NeoPatterns::BVBChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir) {
ActivePattern = BVB;
Interval = interval;
TotalSteps = numPixels();
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
void NeoPatterns::BVBChaseUpdate() {
for (int i = 0; i < numPixels(); i++)
{
if ((i + Index) % 8 == 0)
{
setPixelColor(i, Color1);
}
else
{
// Reduce brightness for the base pixels
float _brightness = 0.2;
uint8_t _r = (uint8_t)(Color2 >> 16);
uint8_t _g = (uint8_t)(Color2 >> 8);
uint8_t _b = (uint8_t)Color2;
setPixelColor(i, Color(_r * _brightness, _g * _brightness, _b * _brightness));
}
}
show();
Increment();
}
void NeoPatterns::ColorWipe(uint32_t color, uint8_t interval, direction dir)
{
ActivePattern = COLOR_WIPE;
Interval = interval;
TotalSteps = numPixels();
Color1 = color;
Index = 0;
Direction = dir;
}
// Update the Color Wipe Pattern
void NeoPatterns::ColorWipeUpdate()
{
setPixelColor(Index, Color1);
show();
Increment();
}
// Initialize for a SCANNNER
void NeoPatterns::Scanner(uint32_t color1, uint8_t interval, bool colorful, bool spiral)
{
ActivePattern = SCANNER;
Interval = interval;
TotalSteps = (numPixels() - 1) * 2;
Color1 = color1;
Index = 0;
wPos = 0;
this->colorful = colorful;
this->spiral = spiral;
}
// Update the Scanner Pattern
void NeoPatterns::ScannerUpdate()
{
if (colorful) {
Color1 = Wheel(wPos);
if (wPos >= 255) {
wPos = 0;
}
else {
wPos++;
}
}
for (int i = 0; i < numPixels(); i++)
{
int finalpos;
if (spiral) {
finalpos = numToSpiralPos(i);
}
else
{
finalpos = i;
}
if (i == Index) // Scan Pixel to the right
{
setPixelColor(finalpos, Color1);
}
else if (i == TotalSteps - Index) // Scan Pixel to the left
{
setPixelColor(finalpos, Color1);
}
else // Fading tail
{
setPixelColor(finalpos, DimColor(getPixelColor(finalpos)));
}
}
show();
Increment();
}
// Initialize for a SCANNNER_RANDOM
void NeoPatterns::ScannerRandom(uint32_t color1, uint8_t interval, bool colorful, bool spiral)
{
ActivePattern = SCANNER_RANDOM;
Interval = interval;
TotalSteps = (numPixels() - 1) * 2;
Color1 = color1;
Index = numPixels() / 2;
wPos = 0;
this->colorful = colorful;
this->spiral = spiral;
}
// Update the Scanner Pattern
void NeoPatterns::ScannerRandomUpdate()
{
if (colorful) {
Color1 = Wheel(wPos);
if (wPos >= 255) {
wPos = 0;
}
else {
wPos++;
}
}
if (random(0, 1000) < 5)
{
Reverse();
}
for (int i = 0; i < numPixels(); i++)
{
int finalpos;
if (spiral) {
finalpos = numToSpiralPos(i);
}
else
{
finalpos = i;
}
if (i == Index) // Scan Pixel to the right
{
setPixelColor(finalpos, Color1);
}
else if (i == TotalSteps - Index) // Scan Pixel to the left
{
setPixelColor(finalpos, Color1);
}
else // Fading tail
{
setPixelColor(finalpos, DimColor(getPixelColor(finalpos)));
}
}
show();
Increment();
}
void NeoPatterns::Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir)
{
ActivePattern = FADE;
Interval = interval;
TotalSteps = steps;
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
// Update the Fade Pattern
void NeoPatterns::FadeUpdate()
{
// Calculate linear interpolation between Color1 and Color2
// Optimise order of operations to minimize truncation error
uint8_t red = ((Red(Color1) * (TotalSteps - Index)) + (Red(Color2) * Index)) / TotalSteps;
uint8_t green = ((Green(Color1) * (TotalSteps - Index)) + (Green(Color2) * Index)) / TotalSteps;
uint8_t blue = ((Blue(Color1) * (TotalSteps - Index)) + (Blue(Color2) * Index)) / TotalSteps;
ColorSet(Color(red, green, blue));
show();
Increment();
}
void NeoPatterns::RandomFade(uint8_t interval ) {
ActivePattern = RANDOM_FADE;
Interval = interval;
TotalSteps = 255;
Index = 0;
}
void NeoPatterns::RandomFadeUpdate() {
ColorSet(Wheel(Index));
Increment();
}
void NeoPatterns::RandomFadeSingle(uint8_t interval, uint8_t speed) {
ActivePattern = RANDOM_FADE_SINGLE;
Interval = interval;
TotalSteps = 255;
Index = 0;
WheelSpeed = speed;
RandomBuffer();
}
void NeoPatterns::RandomFadeSingleUpdate() {
for (int i = 0; i < numPixels(); i++) {
pixelR_buffer[i] += random(0, random(0, WheelSpeed + 1) + 1); //use buffer red channel for color wheel
setPixelColor(i, Wheel(pixelR_buffer[i]));
}
show();
Increment();
}
void NeoPatterns::RandomBuffer()
{
for (int i = 0; i < numPixels(); i++) {
uint32_t c = Wheel(random(0, 256));
pixelR_buffer[i] = (uint8_t)(c >> 16);
pixelG_buffer[i] = (uint8_t)(c >> 8);
pixelB_buffer[i] = (uint8_t)c;
}
}
void NeoPatterns::Random()
{
None(); // Stop all other effects
ActivePattern = RANDOM;
for (int i = 0; i < numPixels(); i++) {
setPixelColor(i, Wheel(random(0, 256)));
}
show();
}
/********** FIRE ********/
void NeoPatterns::Fire(uint8_t interval)
{
ActivePattern = FIRE;
Interval = interval;
TotalSteps = 255;
Index = 0;
}
void NeoPatterns::FireUpdate()
{
int r = 255;
int g = r - 140;
int b = 0;
for (int i = 0; i < numPixels(); i++) {
int flicker = random(0, 70);
int r1 = r - flicker;
int g1 = g - flicker;
int b1 = b - flicker;
if (g1 < 0) g1 = 0;
if (r1 < 0) r1 = 0;
if (b1 < 0) b1 = 0;
setPixelColor(i, r1, g1, b1);
}
show();
Interval = random(50, 150);
}
/********** FIRE END ****/
/********** FIREWORKS ********/
// Manchmal noch instabil und lässt den ESP abstürzen. Müsste mal mit Serial mal gedebuggt werden...
void NeoPatterns::Fireworks()
{
ActivePattern = FIREWORKS;
Interval = 20; // 12ms ist so ziemlich die untere Grenze, durch die Berechnugen und Speicherzugriffe.
// Calculate "good" explosion speed
// 60 LED Strip: 50, 100, 0.985 is a good choice (with Interval = 25)
// Start 0, with maximum speed (100), the rocket should explode at the LATEST at position 50 (of 60). (Which is 10 pixels before maximum)
// rocket_speed_max should not be >100, as this would skip LEDs.
explosion_speed = 0.25f;
rocket_speed_max = 100;
rocket_slowdown = pow(explosion_speed, (float)((float)1/(float)(2*numPixels()-10))); // 0.985f;
rocket_speed_min = int(log(explosion_speed)/((numPixels()/4) * log(rocket_slowdown)))+1;
if (rocket_speed_min/100 < explosion_speed)
{
rocket_speed_min += explosion_speed*100;
}
// OnDebugOutput(String(rocket_slowdown, 6));
// OnDebugOutput(String(rocket_speed_min));
}
/** Debug Output
haus/RGB5m/strip/DEBUG Start: 0: Speed: 0.960 Pos: 0
haus/RGB5m/strip/DEBUG Explode 0: Speed 0.249 Pos: 149 Iterations: 282 // Die Anzahl der Iterationen ist gut berechnet (0.96 -- 282 von 290 max). Nur wurde der Slowdown nicht mit einberechnet
*/
void NeoPatterns::explosion(int pos, float rocketspeed)
{
uint8_t hue = random(0, 256);
uint8_t explosionsize = random(EXPLOSION_SIZE_MIN, EXPLOSION_SIZE_MAX + 1);
for (int i = 0; i < explosionsize; i++)
{
particle_arr.push_back(Particle(this, pos + i - 3, (float)(((float)random(-50, 50)) / 100) + rocketspeed / 2, hue, 1, 0.99f));
}
}
void NeoPatterns::FireworksUpdate()
{
if (millis() > currentRocketMillis + rocketTimeout)
{
// Start a new rocket
if (random(0, 2) == 0)
{
Rocket tmpr = Rocket(this, 0, (float)(((float)random(rocket_speed_min, rocket_speed_max)) / 100), rocket_slowdown);
// OnDebugOutput(String("Start: ") + String(tmpr.id()) + String(": Speed: ") + String(tmpr.rocketspeed(), 3) + String(" Pos: 0"));
rocket_arr.push_back(tmpr);
}
else
{
Rocket tmpr = Rocket(this, numPixels(), -(float)(((float)random(rocket_speed_min, rocket_speed_max)) / 100), rocket_slowdown);
// OnDebugOutput(String("Start: ") + String(tmpr.id()) + String(": Speed: ") + String(tmpr.rocketspeed(), 3) + String(" Pos: ") + String(numPixels()));
rocket_arr.push_back(tmpr);
}
rocketTimeout = random(ROCKET_LAUNCH_TIMEOUT_MIN, ROCKET_LAUNCH_TIMEOUT_MAX+1);
currentRocketMillis = millis();
}
clear();
// Iterate through all particles
for (std::vector<Particle>::iterator it = particle_arr.begin(); it != particle_arr.end(); ++it)
{
Particle & p = *it;
p.update();
// Erase Particles which are too dark
if (p.brightness() < 0.1)
{
it = particle_arr.erase(it); // After erasing, it is now pointing the next element.
--it;
}
}
// Iterate through all rockets
for (std::vector<Rocket>::iterator it = rocket_arr.begin(); it != rocket_arr.end(); ++it)
{
Rocket & r = *it;
// Create Trail on old position
particle_arr.push_back(Particle(this, r.pos(), 0, 20, 0.3));
r.update();
if ((r.rocketspeed() <= explosion_speed) && (r.rocketspeed() >= -explosion_speed))
{
// OnDebugOutput(String("Explode ") + String(r.id()) + String(": Speed ") + String(r.rocketspeed(), 3) + String(" Pos: ") + String(r.pos()) + String(" Iterations: ") + String(r.iteration()));
explosion( r.pos(), r.rocketspeed());
it = rocket_arr.erase(it); // After erasing, it is now pointing the next element.
--it;
}
}
show();
}
/********** FIREWORKS END ****/
/********** DROP ********/
void NeoPatterns::Drop(uint8_t interval)
{
ActivePattern = DROP;
Interval = interval;
TotalSteps = 255;
Index = 0;
for (int i = 0; i < 10; i++) {
drop[i] = 0;
dropBrightness[i] = 0;
}
clear();
}
void NeoPatterns::DropUpdate()
{
// Generate new drop?
if (random(0, 100) > 50)
{
Serial.println("Will generate a new drop");
// New drop
// Find first free drop and discard, if no free place
for (int i = 0; i < MAX_DROPS; i++) {
if (drop[i] == 0)
{
Serial.print("Found a free position for a drop: ");
// Random position
drop[i] = random(0, numPixels());
dropBrightness[i] = 255; // Initial brightness
Serial.print(i);
Serial.print(" pos ");
Serial.println(drop[i]);
break;
}
}
}
// Work for all other drops
for (int i = 0; i < MAX_DROPS; i++) {
if (drop[i] > 0)
{
Serial.print("Updating drop on ");
Serial.println(i);
// Current drop
// dropBrightness[i] = dropBrightness[i]>>1;
dropBrightness[i] *= 0.9;
if (dropBrightness[i] <= 8)
{
// Brightness to zero for all neighbours
dropBrightness[i] = 0;
}
setPixelColor(drop[i], 0, 0, dropBrightness[i]); // TODO: Other colors?
// Set neighbouring drops
int nBright;
for (int neighbour = 1; neighbour < 5; neighbour++) {
//nBright = dropBrightness[i] >> neighbour;
nBright = dropBrightness[i];
for (int j = 1; j < neighbour; j++)
{
nBright *= 0.6;
}
Serial.print(neighbour);
Serial.print(": ");
Serial.println(nBright);
if ((drop[i] - neighbour) >= 0)
{
setPixelColor(drop[i] - neighbour, 0, 0, nBright);
}
if ((drop[i] + neighbour) <= numPixels())
{
setPixelColor(drop[i] + neighbour, 0, 0, nBright);
}
}
if (dropBrightness[i] <= 8)
{
// Disable this drop
drop[i] = 0;
}
}
}
show();
}
/********** DROP END ****/
/********** RINGS ********/
void NeoPatterns::Rings(uint8_t interval)
{
ActivePattern = RINGS;
Interval = interval;
TotalSteps = 255;
Index = 0;
for (int i = 0; i < 10; i++) {
ring[i] = 0;
ringBrightness[i] = 0;
ringDistance[i] = 0;
}
clear();
}
void NeoPatterns::RingsUpdate()
{
// Generate new ring?
if (random(0, 100) > 50)
{
Serial.println("Will generate a new ring");
// New ring
// Find first free ring and discard, if no free place
for (int i = 0; i < MAX_RINGS; i++) {
if (ring[i] == 0)
{
Serial.print("Found a free position for a ring: ");
// Random position
ring[i] = random(0, numPixels());
ringBrightness[i] = 255 << 1; // Initial brightness
ringDistance[i] = 0;
Serial.print(i);
Serial.print(" pos ");
Serial.println(ring[i]);
break;
}
}
}
// Work for all other rings
for (int i = 0; i < MAX_RINGS; i++) {
if (ring[i] > 0)
{
Serial.print("Updating ring on ");
Serial.println(i);
// Center of the ring
ringBrightness[i] *= 0.9;
if (ringBrightness[i] <= 8)
{
// Brightness to zero for the middle
ringBrightness[i] = 0;
}
setPixelColor(ring[i], 0, 0, ringBrightness[i]); // TODO: Other colors?
// Set neighbouring rings
int nBright;
// Maximum distance for rings is 10
// General idea: Start with the middle (max brightness), continue left and right with brightness * 0.9
// For each step, dim current brightness for ALL pixels simply by 0.7, below thershold -> off
ringDistance[i]++;
// Neighbours: Color of middle, dimmed by 0.9 to max distance
for (int neighbour = 1; neighbour < ringDistance[i]; neighbour++)
{
Serial.print("Neighbour ");
Serial.print(neighbour);
nBright = 255;
if (ringBrightness[i] == 0)
{
nBright = 0;
}
else
{
for (int j = 0; j < ringDistance[i] - neighbour; j++)
{
nBright *= 0.8;
}
nBright *= (1 - 0.1 * ringDistance[i]);
}
if (nBright < 10) {
nBright = 0;
}
Serial.print(" brightness: ");
Serial.println(nBright);
if ((ring[i] - neighbour) >= 0)
{
setPixelColor(ring[i] - neighbour, 0, 0, nBright);
}
if ((ring[i] + neighbour) <= numPixels())
{
setPixelColor(ring[i] + neighbour, 0, 0, nBright);
}
}
if (ringBrightness[i] <= 8)
{
// Disable this ring
ring[i] = 0;
}
}
}
show();
}
/********** RINGS END ****/
void NeoPatterns::Smooth(uint8_t wheelSpeed, uint8_t smoothing, uint8_t strength, uint8_t interval) {
ActivePattern = SMOOTH;
Interval = interval;
Index = 0;
WheelSpeed = wheelSpeed;
Smoothing = smoothing;
Strength = strength;
movingPoint_x = 3;
movingPoint_y = 3;
// Clear buffer (from previous or different effects)
for (int i = 0; i < numPixels(); i++) {
pixelR_buffer[i] = 0;
pixelG_buffer[i] = 0;
pixelB_buffer[i] = 0;
}
}
void NeoPatterns::SmoothUpdate() {
uint32_t c = Wheel(wPos);
wPosSlow += WheelSpeed;
wPos = (wPos + (wPosSlow / 10) ) % 255;
wPosSlow = wPosSlow % 16;
uint8_t r = (uint8_t)(c >> 16);
uint8_t g = (uint8_t)(c >> 8);
uint8_t b = (uint8_t)c;
movingPoint_x = movingPoint_x + 8 + random(-random(0, 1 + 1), random(0, 1 + 1) + 1);
movingPoint_y = movingPoint_y + 8 + random(-random(0, 1 + 1), random(0, 1 + 1) + 1);
if (movingPoint_x < 8) {
movingPoint_x = 8 - movingPoint_x;
} else if (movingPoint_x >= 16) {
movingPoint_x = 22 - movingPoint_x;
} else {
movingPoint_x -= 8;
}
if (movingPoint_y < 8) {
movingPoint_y = 8 - movingPoint_y;
} else if (movingPoint_y >= 16) {
movingPoint_y = 22 - movingPoint_y;
} else {
movingPoint_y -= 8;
}
uint8_t startx = movingPoint_x;
uint8_t starty = movingPoint_y;
for (int i = 0; i < Strength; i++) {
movingPoint_x = startx + 8 + random(-random(0, 2 + 1), random(0, 2 + 1) + 1);
movingPoint_y = starty + 8 + random(-random(0, 2 + 1), random(0, 2 + 1) + 1);
if (movingPoint_x < 8) {
movingPoint_x = 8 - movingPoint_x;
} else if (movingPoint_x >= 16) {
movingPoint_x = 22 - movingPoint_x;
} else {
movingPoint_x -= 8;
}
if (movingPoint_y < 8) {
movingPoint_y = 8 - movingPoint_y;
} else if (movingPoint_y >= 16) {
movingPoint_y = 22 - movingPoint_y;
} else {
movingPoint_y -= 8;
}
if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] < r) {
pixelR[xyToPos(movingPoint_x, movingPoint_y)]++;
} else if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] > r) {
pixelR[xyToPos(movingPoint_x, movingPoint_y)]--;
}
if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] < g) {
pixelG[xyToPos(movingPoint_x, movingPoint_y)]++;
} else if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] > g) {
pixelG[xyToPos(movingPoint_x, movingPoint_y)]--;
}
if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] < b) {
pixelB[xyToPos(movingPoint_x, movingPoint_y)]++;
} else if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] > b) {
pixelB[xyToPos(movingPoint_x, movingPoint_y)]--;
}
}
movingPoint_x = startx;
movingPoint_y = starty;
for (int i = 0; i < numPixels(); i++) {
pixelR_buffer[i] = (Smoothing / 100.0) * pixelR[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelR, i, 0, 0);
pixelG_buffer[i] = (Smoothing / 100.0) * pixelG[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelG, i, 0, 0);
pixelB_buffer[i] = (Smoothing / 100.0) * pixelB[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelB, i, 0, 0);
}
for (int i = 0; i < numPixels(); i++) {
pixelR[i] = pixelR_buffer[i];
pixelG[i] = pixelG_buffer[i];
pixelB[i] = pixelB_buffer[i];
setPixelColor(i, pixelR[i], pixelG[i], pixelB[i]);
}
show();
}
/****************** Icon ******************/
void NeoPatterns::Icon(uint8_t fontchar, String iconcolor, uint8_t interval)
{
// Save last effect, should be called after completion again
SavedPattern = ActivePattern;
SavedInterval = Interval;
SavedTotalSteps = TotalSteps;
SavedIndex = Index;
SavedColor1 = Color1;
SavedDirection = Direction;
SavedPlasmaPhase = PlasmaPhase;
SavedPlasmaPhaseIncrement = PlasmaPhaseIncrement;
SavedPlasmaColorStretch = PlasmaColorStretch;
ActivePattern = ICON;
Interval = interval;
TotalSteps = 80;
Index = 80;
Color1 = parseColor(iconcolor);
FontChar = fontchar;
Direction = REVERSE;
}
void NeoPatterns::IconUpdate()
{
for (int i = 0; i < numPixels(); i++) {
uint64_t mask = 1LL << (uint64_t)i;
if ( (font[FontChar]&mask) == 0) {
setPixelColor(numToPos(i), Color(0, 0, 0)); //bit is 0 at pos i
} else {
float _brightness = 1.0 - ( (TotalSteps - Index) * 1.0 / TotalSteps );
uint8_t _r = (uint8_t)(Color1 >> 16);
uint8_t _g = (uint8_t)(Color1 >> 8);
uint8_t _b = (uint8_t)Color1;
setPixelColor(numToPos(i), Color(_r * _brightness, _g * _brightness, _b * _brightness)); //bit is 1 at pos i
}
}
show();
Increment();
}
void NeoPatterns::IconComplete()
{
// Reload last effect
ActivePattern = SavedPattern;
Interval = SavedInterval;
TotalSteps = SavedTotalSteps;
Index = SavedIndex;
Color1 = SavedColor1;
Direction = SavedDirection;
PlasmaPhase = SavedPlasmaPhase;
PlasmaPhaseIncrement = SavedPlasmaPhaseIncrement;
PlasmaColorStretch = SavedPlasmaColorStretch;
}
// Based upon https://github.com/johncarl81/neopixelplasma
void NeoPatterns::Plasma(float phase, float phaseIncrement, float colorStretch, uint8_t interval)
{
ActivePattern = PLASMA;
Interval = interval;
PlasmaPhase = phase;
PlasmaPhaseIncrement = phaseIncrement;
PlasmaColorStretch = colorStretch;
}
void NeoPatterns::PlasmaUpdate()
{
PlasmaPhase += PlasmaPhaseIncrement;
int edge = (int)sqrt(numPixels());
// The two points move along Lissajious curves, see: http://en.wikipedia.org/wiki/Lissajous_curve
// The sin() function returns values in the range of -1.0..1.0, so scale these to our desired ranges.
// The phase value is multiplied by various constants; I chose these semi-randomly, to produce a nice motion.
Point p1 = { (sin(PlasmaPhase * 1.000) + 1.0) * (edge / 2), (sin(PlasmaPhase * 1.310) + 1.0) * (edge / 2) };
Point p2 = { (sin(PlasmaPhase * 1.770) + 1.0) * (edge / 2), (sin(PlasmaPhase * 2.865) + 1.0) * (edge / 2) };
Point p3 = { (sin(PlasmaPhase * 0.250) + 1.0) * (edge / 2), (sin(PlasmaPhase * 0.750) + 1.0) * (edge / 2)};
byte row, col;
// For each row...
for ( row = 0; row < edge; row++ ) {
float row_f = float(row); // Optimization: Keep a floating point value of the row number, instead of recasting it repeatedly.
// For each column...
for ( col = 0; col < edge; col++ ) {
float col_f = float(col); // Optimization.
// Calculate the distance between this LED, and p1.
Point dist1 = { col_f - p1.x, row_f - p1.y }; // The vector from p1 to this LED.
float distance1 = sqrt( dist1.x * dist1.x + dist1.y * dist1.y );
// Calculate the distance between this LED, and p2.
Point dist2 = { col_f - p2.x, row_f - p2.y }; // The vector from p2 to this LED.
float distance2 = sqrt( dist2.x * dist2.x + dist2.y * dist2.y );
// Calculate the distance between this LED, and p3.
Point dist3 = { col_f - p3.x, row_f - p3.y }; // The vector from p3 to this LED.
float distance3 = sqrt( dist3.x * dist3.x + dist3.y * dist3.y );
// Warp the distance with a sin() function. As the distance value increases, the LEDs will get light,dark,light,dark,etc...
// You can use a cos() for slightly different shading, or experiment with other functions. Go crazy!
float color_1 = distance1; // range: 0.0...1.0
float color_2 = distance2;
float color_3 = distance3;
float color_4 = (sin( distance1 * distance2 * PlasmaColorStretch )) + 2.0 * 0.5;
// Square the color_f value to weight it towards 0. The image will be darker and have higher contrast.
color_1 *= color_1 * color_4;
color_2 *= color_2 * color_4;
color_3 *= color_3 * color_4;
color_4 *= color_4;
// Scale the color up to 0..7 . Max brightness is 7.
//strip.setPixelColor(col + (edge * row), strip.Color(color_4, 0, 0) );
setPixelColor(col + (edge * row), Color(color_1, color_2, color_3));
}
}
show();
}
/****************** Helper functions ******************/
void NeoPatterns::SetColor1(uint32_t color) {
Color1 = color;
}
void NeoPatterns::SetColor2(uint32_t color) {
Color2 = color;
}
// Calculate 50% dimmed version of a color (used by ScannerUpdate)
uint32_t NeoPatterns::DimColor(uint32_t color)
{
// Shift R, G and B components one bit to the right
uint32_t dimColor = Color(Red(color) >> 1, Green(color) >> 1, Blue(color) >> 1);
return dimColor;
}
// Set all pixels to a color (synchronously)
void NeoPatterns::ColorSet(uint32_t color)
{
for (int i = 0; i < numPixels(); i++)
{
setPixelColor(i, color);
}
show();
}
void NeoPatterns::ColorSetParameters(String parameters)
{
None();
ActivePattern = FILL;
ColorSet(parseColor(parameters));
}
// Returns the Red component of a 32-bit color
uint8_t NeoPatterns::Red(uint32_t color)
{
return (color >> 16) & 0xFF;
}
// Returns the Green component of a 32-bit color
uint8_t NeoPatterns::Green(uint32_t color)
{
return (color >> 8) & 0xFF;
}
// Returns the Blue component of a 32-bit color
uint8_t NeoPatterns::Blue(uint32_t color)
{
return color & 0xFF;
}
// Input a value 0 to 255 to get a color value.
// The colors are a transition r - g - b - back to r.
uint32_t NeoPatterns::Wheel(byte WheelPos)
{
WheelPos = 255 - WheelPos;
if (WheelPos < 85)
{
return Color(255 - WheelPos * 3, 0, WheelPos * 3);
}
else if (WheelPos < 170)
{
WheelPos -= 85;
return Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
else
{
WheelPos -= 170;
return Color(WheelPos * 3, 255 - WheelPos * 3, 0);
}
}
uint32_t NeoPatterns::Wheel(byte WheelPos, float brightness) {
WheelPos = 255 - WheelPos;
// OnDebugOutput(String("Value ") + String (WheelPos * 3) + String(" converted by brightness ") + String(brightness, 6) + String(" to ") + String(int((float)(WheelPos * 3) * brightness)));
if (WheelPos < 85) {
return Color(int((float)(255 - WheelPos * 3) * brightness), 0, int((float)(WheelPos * 3) * brightness));
}
if (WheelPos < 170) {
WheelPos -= 85;
return Color(0, int((float)(WheelPos * 3) * brightness), int((float)(255 - WheelPos * 3) * brightness));
}
WheelPos -= 170;
return Color(int((float)(WheelPos * 3) * brightness), int((float)(255 - WheelPos * 3) * brightness), 0);
}
// Convert x y pixel position to matrix position
uint8_t NeoPatterns::xyToPos(int x, int y) {
if (y % 2 == 0) {
return (y * 8 + x);
} else {
return (y * 8 + (7 - x));
}
}
//convert pixel number to actual 8x8 matrix position
uint8_t NeoPatterns::numToPos(int num) {
int x = num % 8;
int y = num / 8;
return xyToPos(x, y);
}
// Convert pixel number to actual 8x8 matrix position in a spiral
uint8_t NeoPatterns::numToSpiralPos(int num) {
int edge = (int)sqrt(numPixels());
int findx = edge - 1; // 7
int findy = 0;
int stepsize = edge - 1; // initial value (0..7)
int stepnumber = 0; // each "step" should be used twice
int count = -1;
int dir = 1; // direction: 0 = incX, 1=incY, 2=decX, 3=decY
if (num < edge) {
return num; // trivial
}
for (int i = edge; i <= num; i++)
{
count++;
if (count == stepsize) {
count = 0;
// Change direction
dir++;
stepnumber++;
if (stepnumber == 2) {
stepsize -= 1;
stepnumber = 0;
}
if (dir == 4) {
dir = 0;
}
}
switch (dir) {
case 0:
findx++;
break;
case 1:
findy++;
break;
case 2:
findx--;
break;
case 3:
findy--;
break;
}
}
return xyToPos(findx, findy);
}
uint8_t NeoPatterns::getAverage(uint8_t array[], uint8_t i, int x, int y)
{
// TODO: This currently works only with 8x8 (64 pixel)!
uint16_t sum = 0;
uint8_t count = 0;
if (i >= 8) { //up
sum += array[i - 8];
count++;
}
if (i < (64 - 8)) { //down
sum += array[i + 8];
count++;
}
if (i >= 1) { //left
sum += array[i - 1];
count++;
}
if (i < (64 - 1)) { //right
sum += array[i + 1];
count++;
}
return sum / count;
}
uint32_t NeoPatterns::parseColor(String value) {
if (value.charAt(0) == '#') { //solid fill
String color = value.substring(1);
int number = (int) strtol( &color[0], NULL, 16);
// Split them up into r, g, b values
int r = number >> 16;
int g = number >> 8 & 0xFF;
int b = number & 0xFF;
return Color(r, g, b);
}
return 0;
}