rf24-pio/RF24.cpp

420 lines
9.1 KiB
C++

/*
Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
#include <WProgram.h>
#include <SPI.h>
#include "RF24.h"
#include "nRF24L01.h"
#undef SERIAL_DEBUG
#ifdef SERIAL_DEBUG
#define IF_SERIAL_DEBUG(x) (x)
#else
#define IF_SERIAL_DEBUG(x)
#endif
/******************************************************************/
void RF24::csn(int mode)
{
digitalWrite(csn_pin,mode);
}
/******************************************************************/
void RF24::ce(int mode)
{
digitalWrite(ce_pin,mode);
}
/******************************************************************/
uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
{
uint8_t status;
csn(LOW);
status = SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) );
while ( len-- )
*buf++ = SPI.transfer(0xff);
csn(HIGH);
return status;
}
/******************************************************************/
uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len)
{
uint8_t status;
csn(LOW);
status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) );
while ( len-- )
SPI.transfer(*buf++);
csn(HIGH);
return status;
}
/******************************************************************/
uint8_t RF24::write_register(uint8_t reg, uint8_t value)
{
uint8_t status;
csn(LOW);
status = SPI.transfer( W_REGISTER | ( REGISTER_MASK & reg ) );
SPI.transfer(value);
csn(HIGH);
return status;
}
/******************************************************************/
uint8_t RF24::write_payload(const void* buf)
{
uint8_t status;
const uint8_t* current = (const uint8_t*)buf;
csn(LOW);
status = SPI.transfer( W_TX_PAYLOAD );
uint8_t len = payload_size;
while ( len-- )
SPI.transfer(*current++);
csn(HIGH);
return status;
}
/******************************************************************/
uint8_t RF24::read_payload(void* buf)
{
uint8_t status;
uint8_t* current = (uint8_t*)buf;
csn(LOW);
status = SPI.transfer( R_RX_PAYLOAD );
uint8_t len = payload_size;
while ( len-- )
*current++ = SPI.transfer(0xff);
csn(HIGH);
return status;
}
/******************************************************************/
uint8_t RF24::flush_rx(void)
{
uint8_t status;
csn(LOW);
status = SPI.transfer( FLUSH_RX );
csn(HIGH);
return status;
}
/******************************************************************/
uint8_t RF24::flush_tx(void)
{
uint8_t status;
csn(LOW);
status = SPI.transfer( FLUSH_TX );
csn(HIGH);
return status;
}
/******************************************************************/
uint8_t RF24::get_status(void)
{
uint8_t status;
csn(LOW);
status = SPI.transfer( NOP );
csn(HIGH);
return status;
}
/******************************************************************/
void RF24::print_status(uint8_t status)
{
printf("STATUS=%02x: RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\n\r",
status,
(status & _BV(RX_DR))?1:0,
(status & _BV(TX_DS))?1:0,
(status & _BV(MAX_RT))?1:0,
((status >> RX_P_NO) & B111),
(status & _BV(TX_FULL))?1:0
);
}
/******************************************************************/
void RF24::print_observe_tx(uint8_t value)
{
printf("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\n\r",
value,
(value >> PLOS_CNT) & B1111,
(value >> ARC_CNT) & B1111
);
}
/******************************************************************/
RF24::RF24(int _cepin, int _cspin):
ce_pin(_cepin), csn_pin(_cspin)
{
}
/******************************************************************/
void RF24::setChannel(int channel)
{
write_register(RF_CH,min(channel,127));
}
/******************************************************************/
void RF24::setPayloadSize(uint8_t size)
{
payload_size = min(size,32);
write_register(RX_PW_P0,min(size,32));
}
/******************************************************************/
uint8_t RF24::getPayloadSize(void)
{
return payload_size;
}
/******************************************************************/
void RF24::print_details(void)
{
uint8_t buffer[5];
uint8_t status = read_register(RX_ADDR_P0,buffer,5);
print_status(status);
printf("RX_ADDR_P0 = 0x",buffer);
uint8_t *bufptr = buffer + 5;
while( bufptr-- > buffer )
printf("%02x",*bufptr);
printf("\n\r");
status = read_register(RX_ADDR_P1,buffer,5);
printf("RX_ADDR_P1 = 0x",buffer);
bufptr = buffer + 5;
while( bufptr-- > buffer )
printf("%02x",*bufptr);
printf("\n\r");
status = read_register(TX_ADDR,buffer,5);
printf("TX_ADDR = 0x",buffer);
bufptr = buffer + 5;
while( bufptr-- > buffer )
printf("%02x",*bufptr);
printf("\n\r");
read_register(EN_AA,buffer,1);
printf("EN_AA = %02x\n\r",*buffer);
read_register(EN_RXADDR,buffer,1);
printf("EN_RXADDR = %02x\n\r",*buffer);
read_register(RF_CH,buffer,1);
printf("RF_CH = %02x\n\r",*buffer);
}
/******************************************************************/
void RF24::begin(void)
{
pinMode(ce_pin,OUTPUT);
pinMode(csn_pin,OUTPUT);
ce(LOW);
csn(HIGH);
SPI.begin();
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
SPI.setClockDivider(SPI_CLOCK_DIV8);
// Set generous timeouts, to make testing a little easier
write_register(SETUP_RETR,(B1111 << ARD) | (B1111 << ARC));
// Reset current status
write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
// Flush buffers
flush_rx();
flush_tx();
// Set up default configuration. Callers can always change it later.
setChannel(1);
setPayloadSize(8);
}
/******************************************************************/
void RF24::startListening(void)
{
write_register(CONFIG, _BV(EN_CRC) | _BV(PWR_UP) | _BV(PRIM_RX));
write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
// Flush buffers
flush_rx();
// Go!
ce(HIGH);
// wait for the radio to come up (130us actually only needed)
delay(1);
}
/******************************************************************/
void RF24::stopListening(void)
{
ce(LOW);
}
/******************************************************************/
boolean RF24::write( const void* buf )
{
boolean result = false;
// Transmitter power-up
write_register(CONFIG, _BV(EN_CRC) | _BV(PWR_UP));
// Send the payload
write_payload( buf );
// Allons!
ce(HIGH);
// IN the end, the send should be blocking. It comes back in 60ms worst case, or much faster
// if I tighted up the retry logic. (Default settings will be 750us.
// Monitor the send
uint8_t observe_tx;
uint8_t status;
do
{
status = read_register(OBSERVE_TX,&observe_tx,1);
IF_SERIAL_DEBUG(Serial.print(status,HEX));
IF_SERIAL_DEBUG(Serial.print(observe_tx,HEX));
}
while( ! ( status & ( _BV(TX_DS) | _BV(MAX_RT) ) ) );
if ( status & _BV(TX_DS) )
result = true;
IF_SERIAL_DEBUG(Serial.println(result?"...OK.":"...Failed"));
// Yay, we are done.
ce(LOW);
// Power down
write_register(CONFIG, _BV(EN_CRC) );
// Reset current status
write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
// Flush buffers
flush_tx();
return result;
}
/******************************************************************/
boolean RF24::available(void)
{
uint8_t status = get_status();
boolean result = ( status & _BV(RX_DR) );
if (result)
{
IF_SERIAL_DEBUG(print_status(status));
// Clear the status bit
write_register(STATUS,_BV(RX_DR) );
}
return result;
}
/******************************************************************/
boolean RF24::read( void* buf )
{
// was this the last of the data available?
boolean result = false;
// Fetch the payload
read_payload( buf );
uint8_t fifo_status;
read_register(FIFO_STATUS,&fifo_status,1);
if ( fifo_status & _BV(RX_EMPTY) )
result = true;
return result;
}
/******************************************************************/
void RF24::openWritingPipe(uint64_t value)
{
// Note that AVR 8-bit uC's store this LSB first, and the NRF24L01
// expects it LSB first too, so we're good.
write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), 5);
write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), 5);
}
/******************************************************************/
void RF24::openReadingPipe(uint8_t child, uint64_t value)
{
const uint8_t child_pipe[] = {
RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5 };
const uint8_t child_payload_size[] = {
RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5 };
const uint8_t child_pipe_enable[] = {
ENAA_P1, ENAA_P2, ENAA_P3, ENAA_P4, ENAA_P5 };
if (--child < 5)
{
write_register(child_pipe[child], reinterpret_cast<uint8_t*>(&value), 5);
write_register(child_payload_size[child],payload_size);
// Note this is kind of an inefficient way to set up these enable bits, bit I thought it made
// the calling code more simple
uint8_t en_aa;
read_register(EN_AA,&en_aa,1);
en_aa |= _BV(child_pipe_enable[child]);
write_register(EN_AA,en_aa);
}
}