255 lines
5.4 KiB
Text
255 lines
5.4 KiB
Text
/*
|
|
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
version 2 as published by the Free Software Foundation.
|
|
*/
|
|
|
|
/**
|
|
* Example LED Remote
|
|
*
|
|
* This is an example of how to use the RF24 class to control a remote
|
|
* bank of LED's using buttons on a remote control.
|
|
*
|
|
* On the 'remote', connect any number of buttons or switches from
|
|
* an arduino pin to ground. Update 'button_pins' to reflect the
|
|
* pins used.
|
|
*
|
|
* On the 'led' board, connect the same number of LED's from an
|
|
* arduino pin to a resistor to ground. Update 'led_pins' to reflect
|
|
* the pins used. Also connect a separate pin to ground and change
|
|
* the 'role_pin'. This tells the sketch it's running on the LED board.
|
|
*
|
|
* Every time the buttons change on the remote, the entire state of
|
|
* buttons is send to the led board, which displays the state.
|
|
*/
|
|
|
|
#include <SPI.h>
|
|
#include "nRF24L01.h"
|
|
#include "RF24.h"
|
|
#include "printf.h"
|
|
|
|
//
|
|
// Hardware configuration
|
|
//
|
|
|
|
// Set up nRF24L01 radio on SPI bus plus pins 9 & 10
|
|
|
|
RF24 radio(9,10);
|
|
|
|
// sets the role of this unit in hardware. Connect to GND to be the 'led' board receiver
|
|
// Leave open to be the 'remote' transmitter
|
|
const int role_pin = A4;
|
|
|
|
// Pins on the remote for buttons
|
|
const uint8_t button_pins[] = { 2,3,4,5,6,7 };
|
|
const uint8_t num_button_pins = sizeof(button_pins);
|
|
|
|
// Pins on the LED board for LED's
|
|
const uint8_t led_pins[] = { 2,3,4,5,6,7 };
|
|
const uint8_t num_led_pins = sizeof(led_pins);
|
|
|
|
//
|
|
// Topology
|
|
//
|
|
|
|
// Single radio pipe address for the 2 nodes to communicate.
|
|
const uint64_t pipe = 0xE8E8F0F0E1LL;
|
|
|
|
//
|
|
// Role management
|
|
//
|
|
// Set up role. This sketch uses the same software for all the nodes in this
|
|
// system. Doing so greatly simplifies testing. The hardware itself specifies
|
|
// which node it is.
|
|
//
|
|
// This is done through the role_pin
|
|
//
|
|
|
|
// The various roles supported by this sketch
|
|
typedef enum { role_remote = 1, role_led } role_e;
|
|
|
|
// The debug-friendly names of those roles
|
|
const char* role_friendly_name[] = { "invalid", "Remote", "LED Board"};
|
|
|
|
// The role of the current running sketch
|
|
role_e role;
|
|
|
|
//
|
|
// Payload
|
|
//
|
|
|
|
uint8_t button_states[num_button_pins];
|
|
uint8_t led_states[num_led_pins];
|
|
|
|
//
|
|
// Setup
|
|
//
|
|
|
|
void setup(void)
|
|
{
|
|
//
|
|
// Role
|
|
//
|
|
|
|
// set up the role pin
|
|
pinMode(role_pin, INPUT);
|
|
digitalWrite(role_pin,HIGH);
|
|
delay(20); // Just to get a solid reading on the role pin
|
|
|
|
// read the address pin, establish our role
|
|
if ( digitalRead(role_pin) )
|
|
role = role_remote;
|
|
else
|
|
role = role_led;
|
|
|
|
//
|
|
// Print preamble
|
|
//
|
|
|
|
Serial.begin(57600);
|
|
printf_begin();
|
|
printf("\n\rRF24/examples/led_remote/\n\r");
|
|
printf("ROLE: %s\n\r",role_friendly_name[role]);
|
|
|
|
//
|
|
// Setup and configure rf radio
|
|
//
|
|
|
|
radio.begin();
|
|
|
|
//
|
|
// Open pipes to other nodes for communication
|
|
//
|
|
|
|
// This simple sketch opens a single pipes for these two nodes to communicate
|
|
// back and forth. One listens on it, the other talks to it.
|
|
|
|
if ( role == role_remote )
|
|
{
|
|
radio.openWritingPipe(pipe);
|
|
}
|
|
else
|
|
{
|
|
radio.openReadingPipe(1,pipe);
|
|
}
|
|
|
|
//
|
|
// Start listening
|
|
//
|
|
|
|
if ( role == role_led )
|
|
radio.startListening();
|
|
|
|
//
|
|
// Dump the configuration of the rf unit for debugging
|
|
//
|
|
|
|
radio.printDetails();
|
|
|
|
//
|
|
// Set up buttons / LED's
|
|
//
|
|
|
|
// Set pull-up resistors for all buttons
|
|
if ( role == role_remote )
|
|
{
|
|
int i = num_button_pins;
|
|
while(i--)
|
|
{
|
|
pinMode(button_pins[i],INPUT);
|
|
digitalWrite(button_pins[i],HIGH);
|
|
}
|
|
}
|
|
|
|
// Turn LED's ON until we start getting keys
|
|
if ( role == role_led )
|
|
{
|
|
int i = num_led_pins;
|
|
while(i--)
|
|
{
|
|
pinMode(button_pins[i],OUTPUT);
|
|
led_states[i] = HIGH;
|
|
digitalWrite(led_pins[i],led_states[i]);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
//
|
|
// Loop
|
|
//
|
|
|
|
void loop(void)
|
|
{
|
|
//
|
|
// Remote role. If the state of any button has changed, send the whole state of
|
|
// all buttons.
|
|
//
|
|
|
|
if ( role == role_remote )
|
|
{
|
|
// Get the current state of buttons, and
|
|
// Test if the current state is different from the last state we sent
|
|
int i = num_button_pins;
|
|
bool different = false;
|
|
while(i--)
|
|
{
|
|
uint8_t state = ! digitalRead(button_pins[i]);
|
|
if ( state != button_states[i] )
|
|
{
|
|
different = true;
|
|
button_states[i] = state;
|
|
}
|
|
}
|
|
|
|
// Send the state of the buttons to the LED board
|
|
if ( different )
|
|
{
|
|
printf("Now sending...");
|
|
bool ok = radio.write( button_states, num_button_pins );
|
|
if (ok)
|
|
printf("ok\n\r");
|
|
else
|
|
printf("failed\n\r");
|
|
}
|
|
|
|
// Try again in a short while
|
|
delay(20);
|
|
}
|
|
|
|
//
|
|
// LED role. Receive the state of all buttons, and reflect that in the LEDs
|
|
//
|
|
|
|
if ( role == role_led )
|
|
{
|
|
// if there is data ready
|
|
if ( radio.available() )
|
|
{
|
|
// Dump the payloads until we've gotten everything
|
|
bool done = false;
|
|
while (!done)
|
|
{
|
|
// Fetch the payload, and see if this was the last one.
|
|
done = radio.read( button_states, num_button_pins );
|
|
|
|
// Spew it
|
|
printf("Got buttons\n\r");
|
|
|
|
// For each button, if the button now on, then toggle the LED
|
|
int i = num_led_pins;
|
|
while(i--)
|
|
{
|
|
if ( button_states[i] )
|
|
{
|
|
led_states[i] ^= HIGH;
|
|
digitalWrite(led_pins[i],led_states[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// vim:ai:cin:sts=2 sw=2 ft=cpp
|