379 lines
11 KiB
C++
379 lines
11 KiB
C++
/*
|
|
Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com>
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
version 2 as published by the Free Software Foundation.
|
|
*/
|
|
|
|
#ifndef __RF24_H__
|
|
#define __RF24_H__
|
|
|
|
#include <inttypes.h>
|
|
|
|
/**
|
|
* Driver for nRF24L01 2.4GHz Wireless Transceiver
|
|
*/
|
|
|
|
class RF24
|
|
{
|
|
private:
|
|
uint8_t ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */
|
|
uint8_t csn_pin; /**< SPI Chip select */
|
|
uint8_t payload_size; /**< Fixed size of payloads */
|
|
boolean ack_payload_available; /**< Whether there is an ack payload waiting */
|
|
uint8_t ack_payload_length; /**< Dynamic size of pending ack payload. Note: not used. */
|
|
|
|
protected:
|
|
/**
|
|
* @name Low-level internal interface.
|
|
*
|
|
* Protected methods that address the chip directly.
|
|
*/
|
|
/**@{*/
|
|
|
|
/**
|
|
* Set chip select pin
|
|
*
|
|
* @param mode HIGH to take this unit off the SPI bus, LOW to put it on
|
|
*/
|
|
void csn(int mode) ;
|
|
|
|
/**
|
|
* Set chip enable
|
|
*
|
|
* @param mode HIGH to actively begin transmission or LOW to put in standby. Please see data sheet
|
|
* for a much more detailed description of this pin.
|
|
*/
|
|
void ce(int mode);
|
|
|
|
/**
|
|
* Read a chunk of data in from a register
|
|
*
|
|
* @param reg Which register. Use constants from nRF24L01.h
|
|
* @param buf Where to put the data
|
|
* @param len How many bytes of data to transfer
|
|
* @return Current value of status register
|
|
*/
|
|
uint8_t read_register(uint8_t reg, uint8_t* buf, uint8_t len) ;
|
|
|
|
uint8_t read_register(uint8_t reg) ;
|
|
|
|
/**
|
|
* Write a chunk of data to a register
|
|
*
|
|
* @param reg Which register. Use constants from nRF24L01.h
|
|
* @param buf Where to get the data
|
|
* @param len How many bytes of data to transfer
|
|
* @return Current value of status register
|
|
*/
|
|
uint8_t write_register(uint8_t reg, const uint8_t* buf, uint8_t len);
|
|
|
|
/**
|
|
* Write a single byte to a register
|
|
*
|
|
* @param reg Which register. Use constants from nRF24L01.h
|
|
* @param value The new value to write
|
|
* @return Current value of status register
|
|
*/
|
|
uint8_t write_register(uint8_t reg, uint8_t value);
|
|
|
|
/**
|
|
* Write the transmit payload
|
|
*
|
|
* The size of data written is the fixed payload size, see getPayloadSize()
|
|
*
|
|
* @param buf Where to get the data
|
|
* @param len Number of bytes to be sent
|
|
* @return Current value of status register
|
|
*/
|
|
uint8_t write_payload(const void* buf, uint8_t len);
|
|
|
|
/**
|
|
* Read the receive payload
|
|
*
|
|
* The size of data read is the fixed payload size, see getPayloadSize()
|
|
*
|
|
* @param buf Where to put the data
|
|
* @param len Maximum number of bytes to read
|
|
* @return Current value of status register
|
|
*/
|
|
uint8_t read_payload(void* buf, uint8_t len) ;
|
|
|
|
/**
|
|
* Read the payload length
|
|
*
|
|
* For dynamic payloads, this pulls the size of the payload off
|
|
* the chip
|
|
*
|
|
* @return Payload length of last-received dynamic payload
|
|
*/
|
|
uint8_t read_payload_length(void);
|
|
|
|
/**
|
|
* Empty the receive buffer
|
|
*
|
|
* @return Current value of status register
|
|
*/
|
|
uint8_t flush_rx(void);
|
|
|
|
/**
|
|
* Empty the transmit buffer
|
|
*
|
|
* @return Current value of status register
|
|
*/
|
|
uint8_t flush_tx(void);
|
|
|
|
/**
|
|
* Retrieve the current status of the chip
|
|
*
|
|
* @return Current value of status register
|
|
*/
|
|
uint8_t get_status(void) ;
|
|
|
|
/**
|
|
* Decode and print the given status to stdout
|
|
*
|
|
* @param status Status value to print
|
|
*
|
|
* @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
|
|
*/
|
|
void print_status(uint8_t status) ;
|
|
|
|
/**
|
|
* Decode and print the given 'observe_tx' value to stdout
|
|
*
|
|
* @param value The observe_tx value to print
|
|
*
|
|
* @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
|
|
*/
|
|
void print_observe_tx(uint8_t value) ;
|
|
|
|
void toggle_features(void);
|
|
/**@}*/
|
|
|
|
public:
|
|
/**
|
|
* Constructor
|
|
*
|
|
* Creates a new instance of this driver. Before using, you create an instance
|
|
* and send in the unique pins that this chip is connected to.
|
|
*
|
|
* @param _cepin The pin attached to Chip Enable on the RF module
|
|
* @param _cspin The pin attached to Chip Select
|
|
*/
|
|
RF24(uint8_t _cepin, uint8_t _cspin);
|
|
|
|
/**
|
|
* Begin operation of the chip
|
|
*
|
|
* Call this in setup(), before calling any other methods.
|
|
*/
|
|
void begin(void);
|
|
|
|
/**
|
|
* Set RF communication channel
|
|
*
|
|
* @param channel Which RF channel to communicate on, 0-127
|
|
*/
|
|
void setChannel(uint8_t channel);
|
|
|
|
/**
|
|
* Set Payload Size
|
|
*
|
|
* This implementation uses a pre-stablished fixed payload size for all
|
|
* transmissions. If this method is never called, the driver will always
|
|
* transmit the maximum payload size (32 bytes), no matter how much
|
|
* was sent to write().
|
|
*
|
|
* @todo Implement variable-sized payloads feature
|
|
*
|
|
* @param size The number of bytes in the payload
|
|
*/
|
|
void setPayloadSize(uint8_t size);
|
|
|
|
/**
|
|
* Get Payload Size
|
|
*
|
|
* @see setPayloadSize()
|
|
*
|
|
* @return The number of bytes in the payload
|
|
*/
|
|
uint8_t getPayloadSize(void) ;
|
|
|
|
/**
|
|
* Print a giant block of debugging information to stdout
|
|
*
|
|
* @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
|
|
*/
|
|
void printDetails(void) ;
|
|
|
|
/**
|
|
* Start listening on the pipes opened for reading.
|
|
*
|
|
* Be sure to open some pipes for reading first. Do not call 'write'
|
|
* while in this mode, without first calling 'stopListening'.
|
|
*/
|
|
void startListening(void);
|
|
|
|
/**
|
|
* Stop listening for incoming messages
|
|
*
|
|
* Necessary to do this before writing.
|
|
*/
|
|
void stopListening(void);
|
|
|
|
/**
|
|
* Enter low-power mode
|
|
*
|
|
* To return to normal power mode, either write() some data or
|
|
* startListening().
|
|
*/
|
|
void powerDown(void);
|
|
|
|
/**
|
|
* Write to the open writing pipe
|
|
*
|
|
* This blocks until the message is successfully acknowledged by
|
|
* the receiver or the timeout/retransmit maxima are reached. In
|
|
* the current configuration, the max delay here is 60ms.
|
|
*
|
|
* The maximum size of data written is the fixed payload size, see
|
|
* getPayloadSize(). However, you can write less, and the remainder
|
|
* will just be filled with zeroes.
|
|
*
|
|
* @param buf Pointer to the data to be sent
|
|
* @param len Number of bytes to be sent
|
|
* @return True if the payload was delivered successfully false if not
|
|
*/
|
|
boolean write( const void* buf, uint8_t len );
|
|
|
|
/**
|
|
* Test whether there are bytes available to be read
|
|
*
|
|
* @return True if there is a payload available, false if none is
|
|
*/
|
|
boolean available(void) ;
|
|
|
|
/**
|
|
* Test whether there are bytes available to be read
|
|
*
|
|
* @param[out] pipe_num Which pipe has the payload available
|
|
* @return True if there is a payload available, false if none is
|
|
*/
|
|
boolean available(uint8_t* pipe_num);
|
|
|
|
/**
|
|
* Read the payload
|
|
*
|
|
* Return the last payload received
|
|
*
|
|
* The size of data read is the fixed payload size, see getPayloadSize()
|
|
*
|
|
* @note I specifically chose 'void*' as a data type to make it easier
|
|
* for beginners to use. No casting needed.
|
|
*
|
|
* @param buf Pointer to a buffer where the data should be written
|
|
* @param len Maximum number of bytes to read into the buffer
|
|
* @return True if the payload was delivered successfully false if not
|
|
*/
|
|
boolean read( void* buf, uint8_t len ) ;
|
|
|
|
/**
|
|
* Open a pipe for writing
|
|
*
|
|
* Only one pipe can be open at once, but you can change the pipe
|
|
* you'll listen to. Do not call this while actively listening.
|
|
* Remember to stopListening() first.
|
|
*
|
|
* Addresses are 40-bit hex values, e.g.:
|
|
*
|
|
* @code
|
|
* openWritingPipe(0xF0F0F0F0F0);
|
|
* @endcode
|
|
*
|
|
* @param address The 40-bit address of the pipe to open. This can be
|
|
* any value whatsoever, as long as you are the only one writing to it
|
|
* and only one other radio is listening to it. Coordinate these pipe
|
|
* addresses amongst nodes on the network.
|
|
*/
|
|
void openWritingPipe(uint64_t address);
|
|
|
|
/**
|
|
* Open a pipe for reading
|
|
*
|
|
* Up to 5 pipes can be open for reading at once. Open all the
|
|
* reading pipes, and then call startListening().
|
|
*
|
|
* @see openWritingPipe
|
|
*
|
|
* @warning Pipes 1-5 should share the first 32 bits.
|
|
* Only the least significant byte should be unique, e.g.
|
|
*
|
|
* @code
|
|
* openReadingPipe(1,0xF0F0F0F0AA);
|
|
* openReadingPipe(2,0xF0F0F0F066);
|
|
* @endcode
|
|
*
|
|
* @todo Enforce the restriction that pipes 1-5 must share the top 32 bits
|
|
*
|
|
* @param number Which pipe# to open, 0-5.
|
|
* @param address The 40-bit address of the pipe to open.
|
|
*/
|
|
void openReadingPipe(uint8_t number, uint64_t address);
|
|
|
|
void enableAckPayload(void);
|
|
|
|
void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len);
|
|
|
|
boolean isAckPayloadAvailable(void);
|
|
};
|
|
|
|
/**
|
|
* @example pingpair.pde
|
|
*
|
|
* This is an example of how to use the RF24 class. Write this sketch to two different nodes,
|
|
* connect the role_pin to ground on one. The ping node sends the current time to the pong node,
|
|
* which responds by sending the value back. The ping node can then see how long the whole cycle
|
|
* took.
|
|
*/
|
|
|
|
/**
|
|
* @example starping.pde
|
|
*
|
|
* This sketch is a more complex example of using the RF24 library for Arduino.
|
|
* Deploy this on up to six nodes. Set one as the 'pong receiver' by tying the
|
|
* role_pin low, and the others will be 'ping transmit' units. The ping units
|
|
* unit will send out the value of millis() once a second. The pong unit will
|
|
* respond back with a copy of the value. Each ping unit can get that response
|
|
* back, and determine how long the whole cycle took.
|
|
*
|
|
* This example requires a bit more complexity to determine which unit is which.
|
|
* The pong receiver is identified by having its role_pin tied to ground.
|
|
* The ping senders are further differentiated by a byte in eeprom.
|
|
*/
|
|
|
|
/**
|
|
* @mainpage Driver for nRF24L01 2.4GHz Wireless Transceiver
|
|
*
|
|
* Design Goals: This library is designed to be...
|
|
* @li Maximally compliant with the intended operation of the chip
|
|
* @li Easy for beginners to use
|
|
* @li Consumed with a public interface that's similiar to other Arduino standard libraries
|
|
* @li Built against the standard SPI library.
|
|
*
|
|
* Please refer to:
|
|
*
|
|
* @li <a href="http://maniacbug.github.com/RF24/">Documentation Main Page</a>
|
|
* @li <a href="http://maniacbug.github.com/RF24/classRF24.html">RF24 Class Documentation</a>
|
|
* @li <a href="https://github.com/maniacbug/RF24/">Source Code</a>
|
|
* @li <a href="https://github.com/maniacbug/RF24/archives/master">Downloads Page</a>
|
|
* @li <a href="http://www.nordicsemi.com/files/Product/data_sheet/nRF24L01_Product_Specification_v2_0.pdf">Chip Datasheet</a>
|
|
*
|
|
* This chip uses the SPI bus, plus two chip control pins. Remember that pin 10 must still remain an output, or
|
|
* the SPI hardware will go into 'slave' mode.
|
|
*/
|
|
|
|
#endif // __RF24_H__
|
|
// vim:ai:cin:sts=2 sw=2 ft=cpp
|
|
|