216 lines
5.3 KiB
Text
216 lines
5.3 KiB
Text
/*
|
|
Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com>
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
version 2 as published by the Free Software Foundation.
|
|
*/
|
|
|
|
/**
|
|
* Example RF Radio Ping Pair
|
|
*
|
|
* This sketch is an example of using the RF24 library for Arduino. Deploy this on
|
|
* two nodes, set one as the 'trasmit' and the other the 'receive' unit. The transmit
|
|
* unit will send out the value of millis() once a second. The receive unit will respond
|
|
* back with a copy of the value. The transmit unit can get that 'ping' back, and
|
|
* determine how long the whole cycle took.
|
|
*/
|
|
|
|
#include <SPI.h>
|
|
#include "nRF24L01.h"
|
|
#include "RF24.h"
|
|
#include "printf.h"
|
|
|
|
//
|
|
// Hardware configuration
|
|
//
|
|
|
|
// Set up nRF24L01 radio on SPI bus plus pins 8 & 9
|
|
|
|
RF24 radio(8,9);
|
|
|
|
// sets the address (and therefore the role of operation) of this unit.
|
|
// lo = node0, hi = node1
|
|
const int addr_pin = 7;
|
|
|
|
// The actual value of the node's address will be filled in by the sketch
|
|
// when it reads the addr_pin
|
|
int node_address;
|
|
|
|
//
|
|
// Topology
|
|
//
|
|
|
|
// Radio pipe addresses for the 2 nodes to communicate.
|
|
const uint64_t pipes[2] = { 0xF0F0F0F0E1LL, 0xF0F0F0F0D2LL };
|
|
|
|
//
|
|
// Role management
|
|
//
|
|
// Set up address & role. This sketch uses the same software for all the nodes
|
|
// in this system. Doing so greatly simplifies testing. The hardware itself specifies
|
|
// which node it is.
|
|
//
|
|
// This is done through the addr_pin. Set it low for address #0, high for #1.
|
|
//
|
|
|
|
// The various roles supported by this sketch
|
|
typedef enum { role_rx = 1, role_tx1, role_end } role_e;
|
|
|
|
// The debug-friendly names of those roles
|
|
const char* role_friendly_name[] = { "invalid", "Receive", "Transmit"};
|
|
|
|
// Which role is assumed by each of the possible hardware addresses
|
|
const role_e role_map[2] = { role_rx, role_tx1 };
|
|
|
|
// The role of the current running sketch
|
|
role_e role;
|
|
|
|
void setup(void)
|
|
{
|
|
//
|
|
// Address & Role
|
|
//
|
|
|
|
// set up the address pin
|
|
pinMode(addr_pin, INPUT);
|
|
digitalWrite(addr_pin,HIGH);
|
|
delay(20); // Just to get a solid reading on the addr pin
|
|
|
|
// read the address pin, establish our address and role
|
|
node_address = digitalRead(addr_pin) ? 0 : 1;
|
|
role = role_map[node_address];
|
|
|
|
//
|
|
// Print preamble
|
|
//
|
|
|
|
Serial.begin(9600);
|
|
printf_begin();
|
|
printf("\n\rRF24 pingpair example\n\r");
|
|
printf("ADDRESS: %x\n\r",node_address);
|
|
printf("ROLE: %s\n\r",role_friendly_name[role]);
|
|
|
|
//
|
|
// Setup and configure rf radio
|
|
//
|
|
|
|
radio.begin();
|
|
|
|
// Set channel (optional)
|
|
radio.setChannel(1);
|
|
|
|
// Set size of payload (optional, but recommended)
|
|
// The library uses a fixed-size payload, so if you don't set one, it will pick
|
|
// one for you!
|
|
radio.setPayloadSize(sizeof(unsigned long));
|
|
|
|
//
|
|
// Open pipes to other nodes for communication (required)
|
|
//
|
|
|
|
// This simple sketch opens two pipes for these two nodes to communicate
|
|
// back and forth.
|
|
|
|
// We will open 'our' pipe for writing
|
|
radio.openWritingPipe(pipes[node_address]);
|
|
|
|
// We open the 'other' pipe for reading, in position #1 (we can have up to 5 pipes open for reading)
|
|
int other_node_address;
|
|
if (node_address == 0)
|
|
other_node_address = 1;
|
|
else
|
|
other_node_address = 0;
|
|
radio.openReadingPipe(1,pipes[other_node_address]);
|
|
|
|
//
|
|
// Start listening
|
|
//
|
|
|
|
radio.startListening();
|
|
|
|
//
|
|
// Dump the configuration of the rf unit for debugging
|
|
//
|
|
|
|
radio.print_details();
|
|
}
|
|
|
|
void loop(void)
|
|
{
|
|
//
|
|
// Transmitter role. Repeatedly send the current time
|
|
//
|
|
|
|
if (role == role_tx1)
|
|
{
|
|
// First, stop listening so we can talk.
|
|
radio.stopListening();
|
|
|
|
// Take the time, and send it. This will block until complete
|
|
unsigned long time = millis();
|
|
printf("Now sending %lu...",time);
|
|
bool ok = radio.write( &time );
|
|
|
|
// Now, continue listening
|
|
radio.startListening();
|
|
|
|
// Wait here until we get a response, or timeout (250ms)
|
|
unsigned long started_waiting_at = millis();
|
|
bool timeout = false;
|
|
while ( ! radio.available() && ! timeout )
|
|
if (millis() - started_waiting_at > 250 )
|
|
timeout = true;
|
|
|
|
// Describe the results
|
|
if ( timeout )
|
|
{
|
|
printf("Failed, response timed out.\n\r");
|
|
}
|
|
else
|
|
{
|
|
// Grab the response, compare, and send to debugging spew
|
|
unsigned long got_time;
|
|
radio.read( &got_time );
|
|
|
|
// Spew it
|
|
printf("Got response %lu, round-trip delay: %lu\n\r",got_time,millis()-got_time);
|
|
}
|
|
|
|
// Try again 1s later
|
|
delay(1000);
|
|
}
|
|
|
|
//
|
|
// Receiver role. Receive each packet, dump it out, and send it back to the transmitter
|
|
//
|
|
|
|
if ( role == role_rx )
|
|
{
|
|
// if there is data ready
|
|
if ( radio.available() )
|
|
{
|
|
// Dump the payloads until we've gotten everything
|
|
unsigned long got_time;
|
|
boolean done = false;
|
|
while (!done)
|
|
{
|
|
// Fetch the payload, and see if this was the last one.
|
|
done = radio.read( &got_time );
|
|
|
|
// Spew it
|
|
printf("Got payload %lu...",got_time);
|
|
}
|
|
|
|
// First, stop listening so we can talk
|
|
radio.stopListening();
|
|
|
|
// Send the final one back.
|
|
radio.write( &got_time );
|
|
printf("Sent response.\n\r");
|
|
|
|
// Now, resume listening so we catch the next packets.
|
|
radio.startListening();
|
|
}
|
|
}
|
|
}
|