rf24-pio/examples/pingpair/pingpair.pde
2011-03-18 20:32:34 -07:00

216 lines
5.3 KiB
Text

/*
Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* Example RF Radio Ping Pair
*
* This sketch is an example of using the RF24 library for Arduino. Deploy this on
* two nodes, set one as the 'trasmit' and the other the 'receive' unit. The transmit
* unit will send out the value of millis() once a second. The receive unit will respond
* back with a copy of the value. The transmit unit can get that 'ping' back, and
* determine how long the whole cycle took.
*/
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
#include "printf.h"
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 8 & 9
RF24 radio(8,9);
// sets the address (and therefore the role of operation) of this unit.
// lo = node0, hi = node1
const int addr_pin = 7;
// The actual value of the node's address will be filled in by the sketch
// when it reads the addr_pin
int node_address;
//
// Topology
//
// Radio pipe addresses for the 2 nodes to communicate.
const uint64_t pipes[2] = { 0xF0F0F0F0E1LL, 0xF0F0F0F0D2LL };
//
// Role management
//
// Set up address & role. This sketch uses the same software for all the nodes
// in this system. Doing so greatly simplifies testing. The hardware itself specifies
// which node it is.
//
// This is done through the addr_pin. Set it low for address #0, high for #1.
//
// The various roles supported by this sketch
typedef enum { role_rx = 1, role_tx1, role_end } role_e;
// The debug-friendly names of those roles
const char* role_friendly_name[] = { "invalid", "Receive", "Transmit"};
// Which role is assumed by each of the possible hardware addresses
const role_e role_map[2] = { role_rx, role_tx1 };
// The role of the current running sketch
role_e role;
void setup(void)
{
//
// Address & Role
//
// set up the address pin
pinMode(addr_pin, INPUT);
digitalWrite(addr_pin,HIGH);
delay(20); // Just to get a solid reading on the addr pin
// read the address pin, establish our address and role
node_address = digitalRead(addr_pin) ? 0 : 1;
role = role_map[node_address];
//
// Print preamble
//
Serial.begin(9600);
printf_begin();
printf("\n\rRF24 pingpair example\n\r");
printf("ADDRESS: %x\n\r",node_address);
printf("ROLE: %s\n\r",role_friendly_name[role]);
//
// Setup and configure rf radio
//
radio.begin();
// Set channel (optional)
radio.setChannel(1);
// Set size of payload (optional, but recommended)
// The library uses a fixed-size payload, so if you don't set one, it will pick
// one for you!
radio.setPayloadSize(sizeof(unsigned long));
//
// Open pipes to other nodes for communication (required)
//
// This simple sketch opens two pipes for these two nodes to communicate
// back and forth.
// We will open 'our' pipe for writing
radio.openWritingPipe(pipes[node_address]);
// We open the 'other' pipe for reading, in position #1 (we can have up to 5 pipes open for reading)
int other_node_address;
if (node_address == 0)
other_node_address = 1;
else
other_node_address = 0;
radio.openReadingPipe(1,pipes[other_node_address]);
//
// Start listening
//
radio.startListening();
//
// Dump the configuration of the rf unit for debugging
//
radio.print_details();
}
void loop(void)
{
//
// Transmitter role. Repeatedly send the current time
//
if (role == role_tx1)
{
// First, stop listening so we can talk.
radio.stopListening();
// Take the time, and send it. This will block until complete
unsigned long time = millis();
printf("Now sending %lu...",time);
bool ok = radio.write( &time );
// Now, continue listening
radio.startListening();
// Wait here until we get a response, or timeout (250ms)
unsigned long started_waiting_at = millis();
bool timeout = false;
while ( ! radio.available() && ! timeout )
if (millis() - started_waiting_at > 250 )
timeout = true;
// Describe the results
if ( timeout )
{
printf("Failed, response timed out.\n\r");
}
else
{
// Grab the response, compare, and send to debugging spew
unsigned long got_time;
radio.read( &got_time );
// Spew it
printf("Got response %lu, round-trip delay: %lu\n\r",got_time,millis()-got_time);
}
// Try again 1s later
delay(1000);
}
//
// Receiver role. Receive each packet, dump it out, and send it back to the transmitter
//
if ( role == role_rx )
{
// if there is data ready
if ( radio.available() )
{
// Dump the payloads until we've gotten everything
unsigned long got_time;
boolean done = false;
while (!done)
{
// Fetch the payload, and see if this was the last one.
done = radio.read( &got_time );
// Spew it
printf("Got payload %lu...",got_time);
}
// First, stop listening so we can talk
radio.stopListening();
// Send the final one back.
radio.write( &got_time );
printf("Sent response.\n\r");
// Now, resume listening so we catch the next packets.
radio.startListening();
}
}
}