Rewired everything, re-tested with ping/pong nodes only

This commit is contained in:
maniacbug 2011-05-12 20:21:49 -07:00
parent 1fd8ee72c0
commit 986864236c

View file

@ -7,7 +7,7 @@
*/
/**
* Example RF Radio Ping Star Group
* Example RF Radio Ping Star Group with Relay
*
* This sketch is a more complex example of using the RF24 library for Arduino.
* Deploy this on up to six nodes. Set one as the 'pong receiver' by tying the
@ -16,6 +16,10 @@
* respond back with a copy of the value. Each ping unit can get that response
* back, and determine how long the whole cycle took.
*
* This example introduces a new role, the 'relay', which can relay pings or
* pongs from one host to another. This is needed in larger meshes because
* each radio can only listen to 5-6 others.
*
* This example requires a bit more complexity to determine which unit is which.
* The pong receiver is identified by having its role_pin tied to ground.
* The ping senders are further differentiated by a byte in eeprom.
@ -35,10 +39,6 @@
RF24 radio(8,9);
// sets the role of this unit in hardware. Connect to GND to be the 'pong' receiver
// Leave open to be the 'pong' receiver.
const int role_pin = 7;
//
// Topology
//
@ -49,8 +49,23 @@ const int role_pin = 7;
// the pong. The pong node listens on all the ping node talking pipes
// and sends the pong back on the sending node's specific listening pipe.
const uint64_t talking_pipes[5] = { 0xF0F0F0F0D2LL, 0xF0F0F0F0C3LL, 0xF0F0F0F0B4LL, 0xF0F0F0F0A5LL, 0xF0F0F0F096LL };
const uint64_t listening_pipes[5] = { 0x3A3A3A3AD2LL, 0x3A3A3A3AC3LL, 0x3A3A3A3AB4LL, 0x3A3A3A3AA5LL, 0x3A3A3A3A96LL };
struct node_info
{
uint64_t talking_pipe; // Pipe used to talk to parent node
uint64_t listening_pipe; // Pipe used to listen to parent node
uint8_t parent_node; // Number of parent node
};
const node_info topology[] =
{
{ 0x0000000000LL, 0x0000000000LL,-1 }, // Base
{ 0xF0F0F0F0E1LL, 0x3A3A3A3AE1LL, 0 }, // Relay
{ 0xF0F0F0F0D2LL, 0x3A3A3A3AD2LL, 1 }, // Leaf
{ 0xF0F0F0F0C3LL, 0x3A3A3A3AC3LL, 1 }, // Leaf
{ 0xF0F0F0F0B4LL, 0x3A3A3A3AB4LL, 1 }, // Leaf
{ 0xF0F0F0F0A5LL, 0x3A3A3A3AA5LL, 0 }, // Leaf, direct to Base
};
const short num_nodes = sizeof(topology)/sizeof(node_info);
//
// Role management
@ -63,10 +78,10 @@ const uint64_t listening_pipes[5] = { 0x3A3A3A3AD2LL, 0x3A3A3A3AC3LL, 0x3A3A3A3A
//
// The various roles supported by this sketch
typedef enum { role_invalid = 0, role_ping_out, role_pong_back } role_e;
typedef enum { role_invalid = 0, role_base, role_relay, role_leaf } role_e;
// The debug-friendly names of those roles
const char* role_friendly_name[] = { "invalid", "Ping out", "Pong back"};
const char* role_friendly_name[] = { "invalid", "Base", "Relay", "Leaf" };
// The role of the current running sketch
role_e role;
@ -78,49 +93,77 @@ role_e role;
// Where in EEPROM is the address stored?
const uint8_t address_at_eeprom_location = 0;
// What flag value is stored there so we know the value is valid?
const uint8_t valid_eeprom_flag = 0xdf;
// What is our address (SRAM cache of the address from EEPROM)
// Note that zero is an INVALID address. The pong back unit takes address
// 1, and the rest are 2-6
uint8_t node_address;
// This is an index into the topology[] table above
uint8_t node_address = role_invalid;;
//
// Payload
//
struct payload_t
{
uint8_t from_node;
uint8_t to_node;
unsigned long time;
};
void payload_printf(const char* name, const payload_t& pl)
{
printf("%s Payload from:%u to:%u time:%lu",name,pl.from_node,pl.to_node,pl.time);
}
void setup(void)
{
//
// Role
//
// set up the role pin
pinMode(role_pin, INPUT);
digitalWrite(role_pin,HIGH);
delay(20); // Just to get a solid reading on the role pin
// read the address pin, establish our role
if ( digitalRead(role_pin) )
role = role_ping_out;
else
role = role_pong_back;
//
// Address
//
if ( role == role_pong_back )
node_address = 1;
else
// Unless we find reasonable values in the EEPROM, these are the defaults
node_address = -1;
// Look for the token in EEPROM to indicate the following value is
// a validly set node address
if ( EEPROM.read(address_at_eeprom_location) == valid_eeprom_flag )
{
// Read the address from EEPROM
uint8_t reading = EEPROM.read(address_at_eeprom_location);
uint8_t reading = EEPROM.read(address_at_eeprom_location+1);
// If it is in a valid range for node addresses, it is our
// address.
if ( reading >= 2 && reading <= 6 )
if ( reading <= 5 )
node_address = reading;
}
// Otherwise, it is invalid, so set our address AND ROLE to 'invalid'
//
// Role
//
// Role is determined by address.
if ( node_address != -1 )
{
// Node #0 is the base, by definition
if ( node_address == 0 )
role = role_base;
else
{
node_address = 0;
role = role_invalid;
// Otherwise, it is probably a leaf node
role = role_leaf;
// If there are any nodes in the topology table which consider this
// a parent, then we are a relay.
int i = num_nodes;
while (i--)
{
if ( topology[i].parent_node == node_address )
{
role = role_relay;
break;
}
}
}
}
@ -130,7 +173,7 @@ void setup(void)
Serial.begin(9600);
printf_begin();
printf("\n\rRF24/examples/starping/\n\r");
printf("\n\rRF24/examples/starping_relay/\n\r");
printf("ROLE: %s\n\r",role_friendly_name[role]);
printf("ADDRESS: %i\n\r",node_address);
@ -144,25 +187,31 @@ void setup(void)
// Open pipes to other nodes for communication
//
// The pong node listens on all the ping node talking pipes
// and sends the pong back on the sending node's specific listening pipe.
if ( role == role_pong_back )
{
radio.openReadingPipe(1,talking_pipes[0]);
radio.openReadingPipe(2,talking_pipes[1]);
radio.openReadingPipe(3,talking_pipes[2]);
radio.openReadingPipe(4,talking_pipes[3]);
radio.openReadingPipe(5,talking_pipes[4]);
}
// First listening pipe is #1
uint8_t current_pipe = 1;
// Each ping node has a talking pipe that it will ping into, and a listening
// pipe that it will listen for the pong.
if ( role == role_ping_out )
// Each leaf node has a talking pipe that it will ping into, and a listening
// pipe that it will listen for the pong. Relay nodes also do this.
if ( role == role_leaf || role == role_relay )
{
// Write on our talking pipe
radio.openWritingPipe(talking_pipes[node_address-2]);
radio.openWritingPipe(topology[node_address].talking_pipe);
// Listen on our listening pipe
radio.openReadingPipe(1,listening_pipes[node_address-2]);
radio.openReadingPipe(current_pipe++,topology[node_address].listening_pipe);
}
// The base and relay nodes listens on all their children node's talking pipes
// and sends the pong back on the child node's specific listening pipe.
if ( role == role_base || role == role_relay )
{
// The topology table tells us who our children are
int i = num_nodes;
while (i--)
{
if ( topology[i].parent_node == node_address )
radio.openReadingPipe(current_pipe++,topology[i].talking_pipe);
}
}
//
@ -190,18 +239,22 @@ void setup(void)
void loop(void)
{
//
// Ping out role. Repeatedly send the current time
// Leaf role. Repeatedly send the current time
//
if (role == role_ping_out)
if ( role == role_leaf )
{
// First, stop listening so we can talk.
radio.stopListening();
// Take the time, and send it. This will block until complete
unsigned long time = millis();
printf("Now sending %lu...",time);
radio.write( &time, sizeof(unsigned long) );
payload_t ping;
ping.time = millis();
ping.from_node = node_address;
ping.to_node = 0; // All pings go to the base
payload_printf("PING",ping);
radio.write( &ping, sizeof(payload_t) );
// Now, continue listening
radio.startListening();
@ -221,11 +274,12 @@ void loop(void)
else
{
// Grab the response, compare, and send to debugging spew
unsigned long got_time;
radio.read( &got_time, sizeof(unsigned long) );
payload_t pong;
radio.read( &pong, sizeof(payload_t) );
// Spew it
printf("Got response %lu, round-trip delay: %lu\n\r",got_time,millis()-got_time);
payload_printf(" ...PONG",pong);
printf(" Round-trip delay: %lu\n\r",millis()-pong.time);
}
// Try again 1s later
@ -233,39 +287,46 @@ void loop(void)
}
//
// Pong back role. Receive each packet, dump it out, and send it back
// Base role. Receive each packet, dump it out, and send it back
//
if ( role == role_pong_back )
if ( role == role_base )
{
// if there is data ready
uint8_t pipe_num;
if ( radio.available(&pipe_num) )
{
// Dump the payloads until we've gotten everything
unsigned long got_time;
payload_t ping;
boolean done = false;
while (!done)
{
// Fetch the payload, and see if this was the last one.
done = radio.read( &got_time, sizeof(unsigned long) );
done = radio.read( &ping, sizeof(payload_t) );
// Spew it
printf("Got payload %lu from node %i...",got_time,pipe_num+1);
payload_printf("PING",ping);
}
// First, stop listening so we can talk
radio.stopListening();
// Construct the return payload (pong)
payload_t pong;
pong.time = ping.time;
pong.from_node = node_address;
pong.to_node = ping.from_node;
// Open the correct pipe for writing
radio.openWritingPipe(listening_pipes[pipe_num-1]);
radio.openWritingPipe(topology[pong.to_node].listening_pipe);
// Retain the low 2 bytes to identify the pipe for the spew
uint16_t pipe_id = listening_pipes[pipe_num-1] & 0xffff;
uint16_t pipe_id = topology[pong.to_node].listening_pipe & 0xffff;
// Send the final one back.
radio.write( &got_time, sizeof(unsigned long) );
printf("Sent response to %04x.\n\r",pipe_id);
radio.write( &pong, sizeof(payload_t) );
payload_printf(" ...PONG",pong);
printf(" on pipe %04x.\n\r",pipe_id);
// Now, resume listening so we catch the next packets.
radio.startListening();
@ -279,10 +340,11 @@ void loop(void)
{
// If the character on serial input is in a valid range...
char c = Serial.read();
if ( c >= '1' && c <= '6' )
if ( c >= '0' && c <= '5' )
{
// It is our address
EEPROM.write(address_at_eeprom_location,c-'0');
EEPROM.write(address_at_eeprom_location,valid_eeprom_flag);
EEPROM.write(address_at_eeprom_location+1,c-'0');
// And we are done right now (no easy way to soft reset)
printf("\n\rManually reset address to: %c\n\rPress RESET to continue!",c);
@ -290,4 +352,4 @@ void loop(void)
}
}
}
// vim:ai:ci sts=2 sw=2 ft=cpp
// vim:ai:cin:sts=2 sw=2 ft=cpp