astyle -A1 -s2

This commit is contained in:
maniacbug 2011-07-08 22:29:16 -07:00
parent b000a87aa1
commit 32e8b3fbbb
2 changed files with 499 additions and 493 deletions

120
RF24.cpp
View File

@ -1,6 +1,6 @@
/* /*
Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com> Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation. version 2 as published by the Free Software Foundation.
@ -19,14 +19,14 @@
#endif #endif
// Avoid spurious warnings // Avoid spurious warnings
#undef PROGMEM #undef PROGMEM
#define PROGMEM __attribute__(( section(".progmem.data") )) #define PROGMEM __attribute__(( section(".progmem.data") ))
#undef PSTR #undef PSTR
#define PSTR(s) (__extension__({static prog_char __c[] PROGMEM = (s); &__c[0];})) #define PSTR(s) (__extension__({static prog_char __c[] PROGMEM = (s); &__c[0];}))
/******************************************************************/ /******************************************************************/
void RF24::csn(int mode) void RF24::csn(int mode)
{ {
SPI.setDataMode(SPI_MODE0); SPI.setDataMode(SPI_MODE0);
SPI.setClockDivider(SPI_CLOCK_DIV8); SPI.setClockDivider(SPI_CLOCK_DIV8);
@ -42,7 +42,7 @@ void RF24::ce(int mode)
/******************************************************************/ /******************************************************************/
uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len) uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
{ {
uint8_t status; uint8_t status;
@ -58,7 +58,7 @@ uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
/******************************************************************/ /******************************************************************/
uint8_t RF24::read_register(uint8_t reg) uint8_t RF24::read_register(uint8_t reg)
{ {
csn(LOW); csn(LOW);
SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) ); SPI.transfer( R_REGISTER | ( REGISTER_MASK & reg ) );
@ -124,7 +124,7 @@ uint8_t RF24::write_payload(const void* buf, uint8_t len)
/******************************************************************/ /******************************************************************/
uint8_t RF24::read_payload(void* buf, uint8_t len) uint8_t RF24::read_payload(void* buf, uint8_t len)
{ {
uint8_t status; uint8_t status;
uint8_t* current = reinterpret_cast<uint8_t*>(buf); uint8_t* current = reinterpret_cast<uint8_t*>(buf);
@ -149,7 +149,7 @@ uint8_t RF24::flush_rx(void)
uint8_t status; uint8_t status;
csn(LOW); csn(LOW);
status = SPI.transfer( FLUSH_RX ); status = SPI.transfer( FLUSH_RX );
csn(HIGH); csn(HIGH);
return status; return status;
@ -162,7 +162,7 @@ uint8_t RF24::flush_tx(void)
uint8_t status; uint8_t status;
csn(LOW); csn(LOW);
status = SPI.transfer( FLUSH_TX ); status = SPI.transfer( FLUSH_TX );
csn(HIGH); csn(HIGH);
return status; return status;
@ -170,7 +170,7 @@ uint8_t RF24::flush_tx(void)
/******************************************************************/ /******************************************************************/
uint8_t RF24::get_status(void) uint8_t RF24::get_status(void)
{ {
uint8_t status; uint8_t status;
@ -186,29 +186,29 @@ uint8_t RF24::get_status(void)
void RF24::print_status(uint8_t status) void RF24::print_status(uint8_t status)
{ {
printf_P(PSTR("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\n\r"), printf_P(PSTR("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\n\r"),
status, status,
(status & _BV(RX_DR))?1:0, (status & _BV(RX_DR))?1:0,
(status & _BV(TX_DS))?1:0, (status & _BV(TX_DS))?1:0,
(status & _BV(MAX_RT))?1:0, (status & _BV(MAX_RT))?1:0,
((status >> RX_P_NO) & B111), ((status >> RX_P_NO) & B111),
(status & _BV(TX_FULL))?1:0 (status & _BV(TX_FULL))?1:0
); );
} }
/******************************************************************/ /******************************************************************/
void RF24::print_observe_tx(uint8_t value) void RF24::print_observe_tx(uint8_t value)
{ {
printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\n\r"), printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\n\r"),
value, value,
(value >> PLOS_CNT) & B1111, (value >> PLOS_CNT) & B1111,
(value >> ARC_CNT) & B1111 (value >> ARC_CNT) & B1111
); );
} }
/******************************************************************/ /******************************************************************/
void RF24::print_byte_register(prog_char* name, uint8_t reg, uint8_t qty) void RF24::print_byte_register(prog_char* name, uint8_t reg, uint8_t qty)
{ {
char extra_tab = strlen_P(name) < 8 ? '\t' : 0; char extra_tab = strlen_P(name) < 8 ? '\t' : 0;
printf_P(PSTR("%S\t%c ="),name,extra_tab); printf_P(PSTR("%S\t%c ="),name,extra_tab);
@ -219,11 +219,11 @@ void RF24::print_byte_register(prog_char* name, uint8_t reg, uint8_t qty)
/******************************************************************/ /******************************************************************/
void RF24::print_address_register(prog_char* name, uint8_t reg, uint8_t qty) void RF24::print_address_register(prog_char* name, uint8_t reg, uint8_t qty)
{ {
char extra_tab = strlen_P(name) < 8 ? '\t' : 0; char extra_tab = strlen_P(name) < 8 ? '\t' : 0;
printf_P(PSTR("%S\t%c ="),name,extra_tab); printf_P(PSTR("%S\t%c ="),name,extra_tab);
while (qty--) while (qty--)
{ {
uint8_t buffer[5]; uint8_t buffer[5];
@ -232,7 +232,7 @@ void RF24::print_address_register(prog_char* name, uint8_t reg, uint8_t qty)
printf_P(PSTR(" 0x")); printf_P(PSTR(" 0x"));
uint8_t* bufptr = buffer + sizeof buffer; uint8_t* bufptr = buffer + sizeof buffer;
while( --bufptr >= buffer ) while( --bufptr >= buffer )
printf_P(PSTR("%02x"),*bufptr); printf_P(PSTR("%02x"),*bufptr);
} }
printf_P(PSTR("\n\r")); printf_P(PSTR("\n\r"));
@ -240,7 +240,7 @@ void RF24::print_address_register(prog_char* name, uint8_t reg, uint8_t qty)
/******************************************************************/ /******************************************************************/
RF24::RF24(uint8_t _cepin, uint8_t _cspin): RF24::RF24(uint8_t _cepin, uint8_t _cspin):
ce_pin(_cepin), csn_pin(_cspin), payload_size(32), ack_payload_available(false) ce_pin(_cepin), csn_pin(_cspin), payload_size(32), ack_payload_available(false)
{ {
} }
@ -249,7 +249,7 @@ RF24::RF24(uint8_t _cepin, uint8_t _cspin):
void RF24::setChannel(uint8_t channel) void RF24::setChannel(uint8_t channel)
{ {
write_register(RF_CH,min(channel,127)); write_register(RF_CH,min(channel,127));
} }
/******************************************************************/ /******************************************************************/
@ -261,14 +261,14 @@ void RF24::setPayloadSize(uint8_t size)
/******************************************************************/ /******************************************************************/
uint8_t RF24::getPayloadSize(void) uint8_t RF24::getPayloadSize(void)
{ {
return payload_size; return payload_size;
} }
/******************************************************************/ /******************************************************************/
void RF24::printDetails(void) void RF24::printDetails(void)
{ {
print_status(get_status()); print_status(get_status());
@ -304,13 +304,13 @@ void RF24::begin(void)
// Reset current status // Reset current status
write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
// Initialize CRC // Initialize CRC
write_register(CONFIG, _BV(EN_CRC) ); write_register(CONFIG, _BV(EN_CRC) );
// Flush buffers // Flush buffers
flush_rx(); flush_rx();
flush_tx(); flush_tx();
// Set up default configuration. Callers can always change it later. // Set up default configuration. Callers can always change it later.
setChannel(1); setChannel(1);
@ -322,14 +322,14 @@ void RF24::startListening(void)
{ {
write_register(CONFIG, read_register(CONFIG) | _BV(PWR_UP) | _BV(PRIM_RX)); write_register(CONFIG, read_register(CONFIG) | _BV(PWR_UP) | _BV(PRIM_RX));
write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); write_register(STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
// Restore the pipe0 adddress // Restore the pipe0 adddress
write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&pipe0_reading_address), 5); write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&pipe0_reading_address), 5);
// Flush buffers // Flush buffers
flush_rx(); flush_rx();
// Go! // Go!
ce(HIGH); ce(HIGH);
// wait for the radio to come up (130us actually only needed) // wait for the radio to come up (130us actually only needed)
@ -370,7 +370,7 @@ boolean RF24::write( const void* buf, uint8_t len )
uint8_t observe_tx; uint8_t observe_tx;
uint8_t status; uint8_t status;
uint32_t sent_at = millis(); uint32_t sent_at = millis();
const uint32_t timeout = 500; //ms to wait for timeout const uint32_t timeout = 500; //ms to wait for timeout
do do
{ {
status = read_register(OBSERVE_TX,&observe_tx,1); status = read_register(OBSERVE_TX,&observe_tx,1);
@ -407,7 +407,7 @@ boolean RF24::write( const void* buf, uint8_t len )
powerDown(); powerDown();
// Flush buffers (Is this a relic of past experimentation, and not needed anymore??) // Flush buffers (Is this a relic of past experimentation, and not needed anymore??)
flush_tx(); flush_tx();
return result; return result;
} }
@ -444,19 +444,19 @@ uint8_t RF24::read_payload_length(void)
/******************************************************************/ /******************************************************************/
boolean RF24::available(void) boolean RF24::available(void)
{ {
return available(NULL); return available(NULL);
} }
/******************************************************************/ /******************************************************************/
boolean RF24::available(uint8_t* pipe_num) boolean RF24::available(uint8_t* pipe_num)
{ {
uint8_t status = get_status(); uint8_t status = get_status();
// Too noisy, enable if you really want lots o data!! IF_SERIAL_DEBUG(print_status(status)); // Too noisy, enable if you really want lots o data!! IF_SERIAL_DEBUG(print_status(status));
boolean result = ( status & _BV(RX_DR) ); boolean result = ( status & _BV(RX_DR) );
if (result) if (result)
@ -484,7 +484,7 @@ boolean RF24::available(uint8_t* pipe_num)
/******************************************************************/ /******************************************************************/
boolean RF24::read( void* buf, uint8_t len ) boolean RF24::read( void* buf, uint8_t len )
{ {
// was this the last of the data available? // was this the last of the data available?
boolean result = false; boolean result = false;
@ -504,7 +504,7 @@ boolean RF24::read( void* buf, uint8_t len )
void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready) void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready)
{ {
// Read the status & reset the status in one easy call // Read the status & reset the status in one easy call
uint8_t status = write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); uint8_t status = write_register(STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
// Report to the user what happened // Report to the user what happened
@ -518,10 +518,10 @@ void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready)
void RF24::openWritingPipe(uint64_t value) void RF24::openWritingPipe(uint64_t value)
{ {
// Note that AVR 8-bit uC's store this LSB first, and the NRF24L01 // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01
// expects it LSB first too, so we're good. // expects it LSB first too, so we're good.
write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), 5); write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), 5);
write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), 5); write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), 5);
write_register(RX_PW_P0,min(payload_size,32)); write_register(RX_PW_P0,min(payload_size,32));
} }
@ -529,12 +529,18 @@ void RF24::openWritingPipe(uint64_t value)
void RF24::openReadingPipe(uint8_t child, uint64_t value) void RF24::openReadingPipe(uint8_t child, uint64_t value)
{ {
const uint8_t child_pipe[] = { const uint8_t child_pipe[] =
RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5 }; {
const uint8_t child_payload_size[] = { RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5
RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5 }; };
const uint8_t child_pipe_enable[] = { const uint8_t child_payload_size[] =
ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5 }; {
RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5
};
const uint8_t child_pipe_enable[] =
{
ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5
};
// If this is pipe 0, cache the address. This is needed because // If this is pipe 0, cache the address. This is needed because
// openWritingPipe() will overwrite the pipe 0 address, so // openWritingPipe() will overwrite the pipe 0 address, so
@ -546,11 +552,11 @@ void RF24::openReadingPipe(uint8_t child, uint64_t value)
{ {
// For pipes 2-5, only write the LSB // For pipes 2-5, only write the LSB
if ( child < 2 ) if ( child < 2 )
write_register(child_pipe[child], reinterpret_cast<uint8_t*>(&value), 5); write_register(child_pipe[child], reinterpret_cast<uint8_t*>(&value), 5);
else else
write_register(child_pipe[child], reinterpret_cast<uint8_t*>(&value), 1); write_register(child_pipe[child], reinterpret_cast<uint8_t*>(&value), 1);
write_register(child_payload_size[child],payload_size); write_register(child_payload_size[child],payload_size);
// Note it would be more efficient to set all of the bits for all open // Note it would be more efficient to set all of the bits for all open
// pipes at once. However, I thought it would make the calling code // pipes at once. However, I thought it would make the calling code
@ -560,7 +566,7 @@ void RF24::openReadingPipe(uint8_t child, uint64_t value)
} }
/******************************************************************/ /******************************************************************/
void RF24::toggle_features(void) void RF24::toggle_features(void)
{ {
csn(LOW); csn(LOW);

872
RF24.h
View File

@ -21,488 +21,488 @@ typedef enum { RF24_CRC_8 = 0, RF24_CRC_16 } rf24_crclength_e;
class RF24 class RF24
{ {
private: private:
uint8_t ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */ uint8_t ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */
uint8_t csn_pin; /**< SPI Chip select */ uint8_t csn_pin; /**< SPI Chip select */
uint8_t payload_size; /**< Fixed size of payloads */ uint8_t payload_size; /**< Fixed size of payloads */
boolean ack_payload_available; /**< Whether there is an ack payload waiting */ boolean ack_payload_available; /**< Whether there is an ack payload waiting */
uint8_t ack_payload_length; /**< Dynamic size of pending ack payload. Note: not used. */ uint8_t ack_payload_length; /**< Dynamic size of pending ack payload. Note: not used. */
uint64_t pipe0_reading_address; /**< Last address set on pipe 0 for reading. */ uint64_t pipe0_reading_address; /**< Last address set on pipe 0 for reading. */
protected: protected:
/** /**
* @name Low-level internal interface. * @name Low-level internal interface.
* *
* Protected methods that address the chip directly. Regular users cannot * Protected methods that address the chip directly. Regular users cannot
* ever call these. They are documented for completeness and for developers who * ever call these. They are documented for completeness and for developers who
* may want to extend this class. * may want to extend this class.
*/ */
/**@{*/ /**@{*/
/** /**
* Set chip select pin * Set chip select pin
* *
* @param mode HIGH to take this unit off the SPI bus, LOW to put it on * @param mode HIGH to take this unit off the SPI bus, LOW to put it on
*/ */
void csn(int mode) ; void csn(int mode);
/** /**
* Set chip enable * Set chip enable
* *
* @param mode HIGH to actively begin transmission or LOW to put in standby. Please see data sheet * @param mode HIGH to actively begin transmission or LOW to put in standby. Please see data sheet
* for a much more detailed description of this pin. * for a much more detailed description of this pin.
*/ */
void ce(int mode); void ce(int mode);
/** /**
* Read a chunk of data in from a register * Read a chunk of data in from a register
* *
* @param reg Which register. Use constants from nRF24L01.h * @param reg Which register. Use constants from nRF24L01.h
* @param buf Where to put the data * @param buf Where to put the data
* @param len How many bytes of data to transfer * @param len How many bytes of data to transfer
* @return Current value of status register * @return Current value of status register
*/ */
uint8_t read_register(uint8_t reg, uint8_t* buf, uint8_t len) ; uint8_t read_register(uint8_t reg, uint8_t* buf, uint8_t len);
/** /**
* Read single byte from a register * Read single byte from a register
* *
* @param reg Which register. Use constants from nRF24L01.h * @param reg Which register. Use constants from nRF24L01.h
* @return Current value of register @p reg * @return Current value of register @p reg
*/ */
uint8_t read_register(uint8_t reg); uint8_t read_register(uint8_t reg);
/** /**
* Write a chunk of data to a register * Write a chunk of data to a register
* *
* @param reg Which register. Use constants from nRF24L01.h * @param reg Which register. Use constants from nRF24L01.h
* @param buf Where to get the data * @param buf Where to get the data
* @param len How many bytes of data to transfer * @param len How many bytes of data to transfer
* @return Current value of status register * @return Current value of status register
*/ */
uint8_t write_register(uint8_t reg, const uint8_t* buf, uint8_t len); uint8_t write_register(uint8_t reg, const uint8_t* buf, uint8_t len);
/** /**
* Write a single byte to a register * Write a single byte to a register
* *
* @param reg Which register. Use constants from nRF24L01.h * @param reg Which register. Use constants from nRF24L01.h
* @param value The new value to write * @param value The new value to write
* @return Current value of status register * @return Current value of status register
*/ */
uint8_t write_register(uint8_t reg, uint8_t value); uint8_t write_register(uint8_t reg, uint8_t value);
/** /**
* Write the transmit payload * Write the transmit payload
* *
* The size of data written is the fixed payload size, see getPayloadSize() * The size of data written is the fixed payload size, see getPayloadSize()
* *
* @param buf Where to get the data * @param buf Where to get the data
* @param len Number of bytes to be sent * @param len Number of bytes to be sent
* @return Current value of status register * @return Current value of status register
*/ */
uint8_t write_payload(const void* buf, uint8_t len); uint8_t write_payload(const void* buf, uint8_t len);
/** /**
* Read the receive payload * Read the receive payload
* *
* The size of data read is the fixed payload size, see getPayloadSize() * The size of data read is the fixed payload size, see getPayloadSize()
* *
* @param buf Where to put the data * @param buf Where to put the data
* @param len Maximum number of bytes to read * @param len Maximum number of bytes to read
* @return Current value of status register * @return Current value of status register
*/ */
uint8_t read_payload(void* buf, uint8_t len) ; uint8_t read_payload(void* buf, uint8_t len);
/** /**
* Read the payload length * Read the payload length
* *
* For dynamic payloads, this pulls the size of the payload off * For dynamic payloads, this pulls the size of the payload off
* the chip * the chip
* *
* @return Payload length of last-received dynamic payload * @return Payload length of last-received dynamic payload
*/ */
uint8_t read_payload_length(void); uint8_t read_payload_length(void);
/** /**
* Empty the receive buffer * Empty the receive buffer
* *
* @return Current value of status register * @return Current value of status register
*/ */
uint8_t flush_rx(void); uint8_t flush_rx(void);
/** /**
* Empty the transmit buffer * Empty the transmit buffer
* *
* @return Current value of status register * @return Current value of status register
*/ */
uint8_t flush_tx(void); uint8_t flush_tx(void);
/** /**
* Retrieve the current status of the chip * Retrieve the current status of the chip
* *
* @return Current value of status register * @return Current value of status register
*/ */
uint8_t get_status(void) ; uint8_t get_status(void);
/** /**
* Decode and print the given status to stdout * Decode and print the given status to stdout
* *
* @param status Status value to print * @param status Status value to print
* *
* @warning Does nothing if stdout is not defined. See fdevopen in stdio.h * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
*/ */
void print_status(uint8_t status) ; void print_status(uint8_t status);
/** /**
* Decode and print the given 'observe_tx' value to stdout * Decode and print the given 'observe_tx' value to stdout
* *
* @param value The observe_tx value to print * @param value The observe_tx value to print
* *
* @warning Does nothing if stdout is not defined. See fdevopen in stdio.h * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
*/ */
void print_observe_tx(uint8_t value) ; void print_observe_tx(uint8_t value);
/** /**
* Print the name and value of an 8-bit register to stdout * Print the name and value of an 8-bit register to stdout
* *
* Optionally it can print some quantity of successive * Optionally it can print some quantity of successive
* registers on the same line. This is useful for printing a group * registers on the same line. This is useful for printing a group
* of related registers on one line. * of related registers on one line.
* *
* @param name Name of the register * @param name Name of the register
* @param reg Which register. Use constants from nRF24L01.h * @param reg Which register. Use constants from nRF24L01.h
* @param qty How many successive registers to print * @param qty How many successive registers to print
*/ */
void print_byte_register(prog_char* name, uint8_t reg, uint8_t qty = 1); void print_byte_register(prog_char* name, uint8_t reg, uint8_t qty = 1);
/** /**
* Print the name and value of a 40-bit address register to stdout * Print the name and value of a 40-bit address register to stdout
* *
* Optionally it can print some quantity of successive * Optionally it can print some quantity of successive
* registers on the same line. This is useful for printing a group * registers on the same line. This is useful for printing a group
* of related registers on one line. * of related registers on one line.
* *
* @param name Name of the register * @param name Name of the register
* @param reg Which register. Use constants from nRF24L01.h * @param reg Which register. Use constants from nRF24L01.h
* @param qty How many successive registers to print * @param qty How many successive registers to print
*/ */
void print_address_register(prog_char* name, uint8_t reg, uint8_t qty = 1); void print_address_register(prog_char* name, uint8_t reg, uint8_t qty = 1);
/** /**
* Turn on or off the special features of the chip * Turn on or off the special features of the chip
* *
* The chip has certain 'features' which are only available when the 'features' * The chip has certain 'features' which are only available when the 'features'
* are enabled. See the datasheet for details. * are enabled. See the datasheet for details.
*/ */
void toggle_features(void); void toggle_features(void);
/**@}*/ /**@}*/
public: public:
/** /**
* @name Primary public interface * @name Primary public interface
* *
* These are the main methods you need to operate the chip * These are the main methods you need to operate the chip
*/ */
/**@{*/ /**@{*/
/** /**
* Constructor * Constructor
* *
* Creates a new instance of this driver. Before using, you create an instance * Creates a new instance of this driver. Before using, you create an instance
* and send in the unique pins that this chip is connected to. * and send in the unique pins that this chip is connected to.
* *
* @param _cepin The pin attached to Chip Enable on the RF module * @param _cepin The pin attached to Chip Enable on the RF module
* @param _cspin The pin attached to Chip Select * @param _cspin The pin attached to Chip Select
*/ */
RF24(uint8_t _cepin, uint8_t _cspin); RF24(uint8_t _cepin, uint8_t _cspin);
/** /**
* Begin operation of the chip * Begin operation of the chip
* *
* Call this in setup(), before calling any other methods. * Call this in setup(), before calling any other methods.
*/ */
void begin(void); void begin(void);
/** /**
* Start listening on the pipes opened for reading. * Start listening on the pipes opened for reading.
* *
* Be sure to call openReadingPipe() first. Do not call write() while * Be sure to call openReadingPipe() first. Do not call write() while
* in this mode, without first calling stopListening(). Call * in this mode, without first calling stopListening(). Call
* isAvailable() to check for incoming traffic, and read() to get it. * isAvailable() to check for incoming traffic, and read() to get it.
*/ */
void startListening(void); void startListening(void);
/** /**
* Stop listening for incoming messages * Stop listening for incoming messages
* *
* Do this before calling write(). * Do this before calling write().
*/ */
void stopListening(void); void stopListening(void);
/** /**
* Write to the open writing pipe * Write to the open writing pipe
* *
* Be sure to call openWritingPipe() first to set the destination * Be sure to call openWritingPipe() first to set the destination
* of where to write to. * of where to write to.
* *
* This blocks until the message is successfully acknowledged by * This blocks until the message is successfully acknowledged by
* the receiver or the timeout/retransmit maxima are reached. In * the receiver or the timeout/retransmit maxima are reached. In
* the current configuration, the max delay here is 60ms. * the current configuration, the max delay here is 60ms.
* *
* The maximum size of data written is the fixed payload size, see * The maximum size of data written is the fixed payload size, see
* getPayloadSize(). However, you can write less, and the remainder * getPayloadSize(). However, you can write less, and the remainder
* will just be filled with zeroes. * will just be filled with zeroes.
* *
* @param buf Pointer to the data to be sent * @param buf Pointer to the data to be sent
* @param len Number of bytes to be sent * @param len Number of bytes to be sent
* @return True if the payload was delivered successfully false if not * @return True if the payload was delivered successfully false if not
*/ */
boolean write( const void* buf, uint8_t len ); boolean write( const void* buf, uint8_t len );
/** /**
* Test whether there are bytes available to be read * Test whether there are bytes available to be read
* *
* @return True if there is a payload available, false if none is * @return True if there is a payload available, false if none is
*/ */
boolean available(void) ; boolean available(void);
/** /**
* Read the payload * Read the payload
* *
* Return the last payload received * Return the last payload received
* *
* The size of data read is the fixed payload size, see getPayloadSize() * The size of data read is the fixed payload size, see getPayloadSize()
* *
* @note I specifically chose 'void*' as a data type to make it easier * @note I specifically chose 'void*' as a data type to make it easier
* for beginners to use. No casting needed. * for beginners to use. No casting needed.
* *
* @param buf Pointer to a buffer where the data should be written * @param buf Pointer to a buffer where the data should be written
* @param len Maximum number of bytes to read into the buffer * @param len Maximum number of bytes to read into the buffer
* @return True if the payload was delivered successfully false if not * @return True if the payload was delivered successfully false if not
*/ */
boolean read( void* buf, uint8_t len ) ; boolean read( void* buf, uint8_t len );
/** /**
* Open a pipe for writing * Open a pipe for writing
* *
* Only one pipe can be open at once, but you can change the pipe * Only one pipe can be open at once, but you can change the pipe
* you'll listen to. Do not call this while actively listening. * you'll listen to. Do not call this while actively listening.
* Remember to stopListening() first. * Remember to stopListening() first.
* *
* Addresses are 40-bit hex values, e.g.: * Addresses are 40-bit hex values, e.g.:
* *
* @code * @code
* openWritingPipe(0xF0F0F0F0F0); * openWritingPipe(0xF0F0F0F0F0);
* @endcode * @endcode
* *
* @param address The 40-bit address of the pipe to open. This can be * @param address The 40-bit address of the pipe to open. This can be
* any value whatsoever, as long as you are the only one writing to it * any value whatsoever, as long as you are the only one writing to it
* and only one other radio is listening to it. Coordinate these pipe * and only one other radio is listening to it. Coordinate these pipe
* addresses amongst nodes on the network. * addresses amongst nodes on the network.
*/ */
void openWritingPipe(uint64_t address); void openWritingPipe(uint64_t address);
/** /**
* Open a pipe for reading * Open a pipe for reading
* *
* Up to 6 pipes can be open for reading at once. Open all the * Up to 6 pipes can be open for reading at once. Open all the
* reading pipes, and then call startListening(). * reading pipes, and then call startListening().
* *
* @see openWritingPipe * @see openWritingPipe
* *
* @warning Pipes 1-5 should share the first 32 bits. * @warning Pipes 1-5 should share the first 32 bits.
* Only the least significant byte should be unique, e.g. * Only the least significant byte should be unique, e.g.
* @code * @code
* openReadingPipe(1,0xF0F0F0F0AA); * openReadingPipe(1,0xF0F0F0F0AA);
* openReadingPipe(2,0xF0F0F0F066); * openReadingPipe(2,0xF0F0F0F066);
* @endcode * @endcode
* *
* @warning Pipe 0 is also used by the writing pipe. So if you open * @warning Pipe 0 is also used by the writing pipe. So if you open
* pipe 0 for reading, and then startListening(), it will overwrite the * pipe 0 for reading, and then startListening(), it will overwrite the
* writing pipe. Ergo, do an openWritingPipe() again before write(). * writing pipe. Ergo, do an openWritingPipe() again before write().
* *
* @todo Enforce the restriction that pipes 1-5 must share the top 32 bits * @todo Enforce the restriction that pipes 1-5 must share the top 32 bits
* *
* @param number Which pipe# to open, 0-5. * @param number Which pipe# to open, 0-5.
* @param address The 40-bit address of the pipe to open. * @param address The 40-bit address of the pipe to open.
*/ */
void openReadingPipe(uint8_t number, uint64_t address); void openReadingPipe(uint8_t number, uint64_t address);
/**@}*/ /**@}*/
/** /**
* @name Optional public interface * @name Optional public interface
* *
* Methods you may want to use but are not needed for regular operation * Methods you may want to use but are not needed for regular operation
*/ */
/**@{*/ /**@{*/
/** /**
* Set the number and delay of retries upon failed submit * Set the number and delay of retries upon failed submit
* *
* @param delay How long to wait between each retry, in multiples of 250us, * @param delay How long to wait between each retry, in multiples of 250us,
* max is 15. 0 means 250us, 15 means 4000us. * max is 15. 0 means 250us, 15 means 4000us.
* @param count How many retries before giving up, max 15 * @param count How many retries before giving up, max 15
*/ */
void setRetries(uint8_t delay, uint8_t count); void setRetries(uint8_t delay, uint8_t count);
/** /**
* Set RF communication channel * Set RF communication channel
* *
* @param channel Which RF channel to communicate on, 0-127 * @param channel Which RF channel to communicate on, 0-127
*/ */
void setChannel(uint8_t channel); void setChannel(uint8_t channel);
/** /**
* Set Payload Size * Set Payload Size
* *
* This implementation uses a pre-stablished fixed payload size for all * This implementation uses a pre-stablished fixed payload size for all
* transmissions. If this method is never called, the driver will always * transmissions. If this method is never called, the driver will always
* transmit the maximum payload size (32 bytes), no matter how much * transmit the maximum payload size (32 bytes), no matter how much
* was sent to write(). * was sent to write().
* *
* @todo Implement variable-sized payloads feature * @todo Implement variable-sized payloads feature
* *
* @param size The number of bytes in the payload * @param size The number of bytes in the payload
*/ */
void setPayloadSize(uint8_t size); void setPayloadSize(uint8_t size);
/** /**
* Get Payload Size * Get Payload Size
* *
* @see setPayloadSize() * @see setPayloadSize()
* *
* @return The number of bytes in the payload * @return The number of bytes in the payload
*/ */
uint8_t getPayloadSize(void) ; uint8_t getPayloadSize(void);
/** /**
* Print a giant block of debugging information to stdout * Print a giant block of debugging information to stdout
* *
* @warning Does nothing if stdout is not defined. See fdevopen in stdio.h * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
*/ */
void printDetails(void) ; void printDetails(void);
/** /**
* Enter low-power mode * Enter low-power mode
* *
* To return to normal power mode, either write() some data or * To return to normal power mode, either write() some data or
* startListening(). * startListening().
*/ */
void powerDown(void); void powerDown(void);
/** /**
* Test whether there are bytes available to be read * Test whether there are bytes available to be read
* *
* Use this version to discover on which pipe the message * Use this version to discover on which pipe the message
* arrived. * arrived.
* *
* @param[out] pipe_num Which pipe has the payload available * @param[out] pipe_num Which pipe has the payload available
* @return True if there is a payload available, false if none is * @return True if there is a payload available, false if none is
*/ */
boolean available(uint8_t* pipe_num); boolean available(uint8_t* pipe_num);
/** /**
* Non-blocking write to the open writing pipe * Non-blocking write to the open writing pipe
* *
* Just like write(), but it returns immediately. To find out what happened * Just like write(), but it returns immediately. To find out what happened
* to the send, catch the IRQ and then call whatHappened(). * to the send, catch the IRQ and then call whatHappened().
* *
* @see write() * @see write()
* @see whatHappened() * @see whatHappened()
* *
* @param buf Pointer to the data to be sent * @param buf Pointer to the data to be sent
* @param len Number of bytes to be sent * @param len Number of bytes to be sent
* @return True if the payload was delivered successfully false if not * @return True if the payload was delivered successfully false if not
*/ */
void startWrite( const void* buf, uint8_t len ); void startWrite( const void* buf, uint8_t len );
/** /**
* Enable custom payloads on the acknowledge packets * Enable custom payloads on the acknowledge packets
* *
* Ack payloads are a handy way to return data back to senders without * Ack payloads are a handy way to return data back to senders without
* manually changing the radio modes on both units. * manually changing the radio modes on both units.
* *
* @see examples/pingpair_pl/pingpair_pl.pde * @see examples/pingpair_pl/pingpair_pl.pde
*/ */
void enableAckPayload(void); void enableAckPayload(void);
/** /**
* Write an ack payload for the specified pipe * Write an ack payload for the specified pipe
* *
* The next time a message is received on @p pipe, the data in @p buf will * The next time a message is received on @p pipe, the data in @p buf will
* be sent back in the acknowledgement. * be sent back in the acknowledgement.
* *
* @warning According to the data sheet, only three of these can be pending * @warning According to the data sheet, only three of these can be pending
* at any time. I have not tested this. * at any time. I have not tested this.
* *
* @param pipe Which pipe# (typically 1-5) will get this response. * @param pipe Which pipe# (typically 1-5) will get this response.
* @param buf Pointer to data that is sent * @param buf Pointer to data that is sent
* @param len Length of the data to send, up to 32 bytes max. Not affected * @param len Length of the data to send, up to 32 bytes max. Not affected
* by the static payload set by setPayloadSize(). * by the static payload set by setPayloadSize().
*/ */
void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len); void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len);
/** /**
* Determine if an ack payload was received in the most recent call to * Determine if an ack payload was received in the most recent call to
* write(). * write().
* *
* Call read() to retrieve the ack payload. * Call read() to retrieve the ack payload.
* *
* @warning Calling this function clears the internal flag which indicates * @warning Calling this function clears the internal flag which indicates
* a payload is available. If it returns true, you must read the packet * a payload is available. If it returns true, you must read the packet
* out as the very next interaction with the radio, or the results are * out as the very next interaction with the radio, or the results are
* undefined. * undefined.
* *
* @return True if an ack payload is available. * @return True if an ack payload is available.
*/ */
boolean isAckPayloadAvailable(void); boolean isAckPayloadAvailable(void);
/** /**
* Call this when you get an interrupt to find out why * Call this when you get an interrupt to find out why
* *
* Tells you what caused the interrupt, and clears the state of * Tells you what caused the interrupt, and clears the state of
* interrupts. * interrupts.
* *
* @param[out] tx_ok The send was successful (TX_DS) * @param[out] tx_ok The send was successful (TX_DS)
* @param[out] tx_fail The send failed, too many retries (MAX_RT) * @param[out] tx_fail The send failed, too many retries (MAX_RT)
* @param[out] rx_ready There is a message waiting to be read (RX_DS) * @param[out] rx_ready There is a message waiting to be read (RX_DS)
*/ */
void whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready); void whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready);
/** /**
* Enable or disable auto-acknowlede packets * Enable or disable auto-acknowlede packets
* *
* This is enabled by default, so it's only needed if you want to turn * This is enabled by default, so it's only needed if you want to turn
* it off for some reason. * it off for some reason.
* *
* @param enable Whether to enable (true) or disable (false) auto-acks * @param enable Whether to enable (true) or disable (false) auto-acks
*/ */
void setAutoAck(bool enable); void setAutoAck(bool enable);
/** /**
* Test whether there was a carrier on the line for the * Test whether there was a carrier on the line for the
* previous listening period. * previous listening period.
* *
* Useful to check for interference on the current channel. * Useful to check for interference on the current channel.
* *
* @return true if was carrier, false if not * @return true if was carrier, false if not
*/ */
boolean testCarrier(void); boolean testCarrier(void);
/** /**
* Set the transmission data rate * Set the transmission data rate
* *
* @param speed RF24_1MBPS for 1Mbps or RF24_2MBPS for 2Mbps * @param speed RF24_1MBPS for 1Mbps or RF24_2MBPS for 2Mbps
*/ */
void setDataRate(rf24_datarate_e speed); void setDataRate(rf24_datarate_e speed);
/** /**
* Set the CRC length * Set the CRC length
* *
* @param length RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit * @param length RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
*/ */
void setCRCLength(rf24_crclength_e length); void setCRCLength(rf24_crclength_e length);
/**@}*/ /**@}*/
}; };
/** /**