lightmeter/calibration/calibration.py

40 lines
1.3 KiB
Python
Raw Normal View History

2018-03-22 07:57:53 +00:00
#!/usr/bin/env python3
import numpy as np
import csv
import matplotlib.pyplot as plt
xcolumn=1 #column with readings
ycolumn=4 #column with calibration data
ncoefs=3 #number of coefficients
xvalues=[]
yvalues=[]
with open('20180123_prototype_calibration.csv', 'r') as csvfile:
csvreader = csv.reader(csvfile, delimiter=',')
firstrow=True
for row in csvreader:
xvalue=row[xcolumn]
yvalue=row[ycolumn]
if len(xvalue)>0 and len(yvalue)>0 and not firstrow:
xvalue=float(xvalue)
yvalue=float(yvalue)
if yvalue>12.5:
#print(""+str(xvalue)+" - "+str(yvalue))
xvalues.append(xvalue)
yvalues.append(yvalue)
firstrow=False
coefs=np.polyfit(xvalues,yvalues,ncoefs) #fit polynomial curve
print(coefs) #coef 0 is the one with highest polynomial
xtest=np.arange(max(xvalues)) #x values for test visualization
ytest=np.polyval(coefs, xtest) #calculate y values with polynomial function
#ytest=[coefs[3]+coefs[2]*pow(x,1)+coefs[1]*pow(x,2)+coefs[0]*pow(x,3) for x in xtest]
plt.scatter(xvalues,yvalues,s=0.25,c='g') #plot sample data
plt.plot(xtest,ytest,c='r') #plot approximated curve
plt.xlabel('LDR Value')
plt.ylabel('Ev')
plt.show()