hoverboard-firmware-hack-se.../Src/main.c

330 lines
9.9 KiB
C

/*
* This file is part of the hoverboard-firmware-hack project.
*
* Copyright (C) 2017-2018 Rene Hopf <renehopf@mac.com>
* Copyright (C) 2017-2018 Nico Stute <crinq@crinq.de>
* Copyright (C) 2017-2018 Niklas Fauth <niklas.fauth@kit.fail>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "stm32f1xx_hal.h"
#include "defines.h"
#include "setup.h"
#include "config.h"
//#include "hd44780.h"
void SystemClock_Config(void);
extern TIM_HandleTypeDef htim_left;
extern TIM_HandleTypeDef htim_right;
extern ADC_HandleTypeDef hadc1;
extern ADC_HandleTypeDef hadc2;
extern volatile adc_buf_t adc_buffer;
//LCD_PCF8574_HandleTypeDef lcd;
extern I2C_HandleTypeDef hi2c2;
extern UART_HandleTypeDef huart2;
int cmd1; // normalized input values. -1000 to 1000
int cmd2;
int cmd3;
typedef struct{
int16_t steer;
int16_t speed;
//uint32_t crc;
} Serialcommand;
volatile Serialcommand command;
uint8_t button1, button2;
int steer; // global variable for steering. -1000 to 1000
int speed; // global variable for speed. -1000 to 1000
extern volatile int pwml; // global variable for pwm left. -1000 to 1000
extern volatile int pwmr; // global variable for pwm right. -1000 to 1000
extern volatile int weakl; // global variable for field weakening left. -1000 to 1000
extern volatile int weakr; // global variable for field weakening right. -1000 to 1000
extern uint8_t buzzerFreq; // global variable for the buzzer pitch. can be 1, 2, 3, 4, 5, 6, 7...
extern uint8_t buzzerPattern; // global variable for the buzzer pattern. can be 1, 2, 3, 4, 5, 6, 7...
extern uint8_t enable; // global variable for motor enable
extern volatile uint32_t timeout; // global variable for timeout
extern float batteryVoltage; // global variable for battery voltage
extern uint8_t nunchuck_data[6];
#ifdef CONTROL_PPM
extern volatile uint16_t ppm_captured_value[PPM_NUM_CHANNELS+1];
#endif
int milli_vel_error_sum = 0;
int main(void) {
HAL_Init();
__HAL_RCC_AFIO_CLK_ENABLE();
HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
/* System interrupt init*/
/* MemoryManagement_IRQn interrupt configuration */
HAL_NVIC_SetPriority(MemoryManagement_IRQn, 0, 0);
/* BusFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(BusFault_IRQn, 0, 0);
/* UsageFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(UsageFault_IRQn, 0, 0);
/* SVCall_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SVCall_IRQn, 0, 0);
/* DebugMonitor_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DebugMonitor_IRQn, 0, 0);
/* PendSV_IRQn interrupt configuration */
HAL_NVIC_SetPriority(PendSV_IRQn, 0, 0);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
SystemClock_Config();
__HAL_RCC_DMA1_CLK_DISABLE();
MX_GPIO_Init();
MX_TIM_Init();
MX_ADC1_Init();
MX_ADC2_Init();
#if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3)
UART_Init();
#endif
HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, 1);
HAL_ADC_Start(&hadc1);
HAL_ADC_Start(&hadc2);
for (int i = 8; i >= 0; i--) {
buzzerFreq = i;
HAL_Delay(100);
}
buzzerFreq = 0;
HAL_GPIO_WritePin(LED_PORT, LED_PIN, 1);
int lastSpeedL = 0, lastSpeedR = 0;
int speedL = 0, speedR = 0;
float direction = 1;
#ifdef CONTROL_PPM
PPM_Init();
#endif
#ifdef CONTROL_NUNCHUCK
I2C_Init();
Nunchuck_Init();
#endif
#ifdef CONTROL_SERIAL_USART2
UART_Control_Init();
HAL_UART_Receive_DMA(&huart2, (uint8_t *)&command, 4);
#endif
#ifdef DEBUG_I2C_LCD
I2C_Init();
HAL_Delay(50);
lcd.pcf8574.PCF_I2C_ADDRESS = 0x27;
lcd.pcf8574.PCF_I2C_TIMEOUT = 5;
lcd.pcf8574.i2c = hi2c2;
lcd.NUMBER_OF_LINES = NUMBER_OF_LINES_2;
lcd.type = TYPE0;
if(LCD_Init(&lcd)!=LCD_OK){
// error occured
//TODO while(1);
}
LCD_ClearDisplay(&lcd);
HAL_Delay(5);
LCD_SetLocation(&lcd, 0, 0);
LCD_WriteString(&lcd, "Hover V2.0");
LCD_SetLocation(&lcd, 0, 1);
LCD_WriteString(&lcd, "Initializing...");
#endif
enable = 1; // enable motors
while(1) {
HAL_Delay(5);
#ifdef CONTROL_NUNCHUCK
Nunchuck_Read();
cmd1 = CLAMP((nunchuck_data[0] - 127) * 8, -1000, 1000); // x - axis. Nunchuck joystick readings range 30 - 230
cmd2 = CLAMP((nunchuck_data[1] - 128) * 8, -1000, 1000); // y - axis
button1 = (uint8_t)nunchuck_data[5] & 1;
button2 = (uint8_t)(nunchuck_data[5] >> 1) & 1;
#endif
#ifdef CONTROL_PPM
cmd1 = CLAMP((ppm_captured_value[0] - 500) * 2, -1000, 1000);
cmd2 = CLAMP((ppm_captured_value[1] - 500) * 2, -1000, 1000);
button1 = ppm_captured_value[5] > 500;
float scale = ppm_captured_value[2] / 1000.0f;
#endif
#ifdef CONTROL_ADC
// ADC values range: 0-4095, see ADC-calibration in config.h
cmd1 = CLAMP(adc_buffer.l_tx2 - ADC1_MIN, 0, ADC1_MAX) / (ADC1_MAX / 1000.0f); // ADC1
cmd2 = CLAMP(adc_buffer.l_rx2 - ADC2_MIN, 0, ADC2_MAX) / (ADC2_MAX / 1000.0f); // ADC2
// use ADCs as button inputs:
button1 = (uint8_t)(adc_buffer.l_tx2 > 2000); // ADC1
button2 = (uint8_t)(adc_buffer.l_rx2 > 2000); // ADC2
timeout = 0;
#endif
#ifdef CONTROL_SERIAL_USART2
cmd1 = CLAMP((int16_t)command.steer, -1000, 1000);
cmd2 = CLAMP((int16_t)command.speed, -1000, 1000);
timeout = 0;
#endif
// ####### LOW-PASS FILTER #######
steer = steer * (1.0 - FILTER) + cmd1 * FILTER;
speed = speed * (1.0 - FILTER) + cmd2 * FILTER;
// ####### MIXER #######
speedR = CLAMP(speed * SPEED_COEFFICIENT - steer * STEER_COEFFICIENT, -1000, 1000);
speedL = CLAMP(speed * SPEED_COEFFICIENT + steer * STEER_COEFFICIENT, -1000, 1000);
// ####### DEBUG SERIAL OUT #######
#ifdef CONTROL_ADC
setScopeChannel(0, (int)adc_buffer.l_tx2); // ADC1
setScopeChannel(1, (int)adc_buffer.l_rx2); // ADC2
#endif
setScopeChannel(2, (int)speedR);
setScopeChannel(3, (int)speedL);
setScopeChannel(4, (int)adc_buffer.batt1); // for battery voltage calibration
setScopeChannel(5, (int)(batteryVoltage * 100.0f)); // for verifying battery voltage calibration
// setScopeChannel(6, (int));
// setScopeChannel(7, (int));
consoleScope();
#ifdef ADDITIONAL_CODE
ADDITIONAL_CODE;
#endif
// ####### SET OUTPUTS #######
if ((speedL < lastSpeedL + 50 && speedL > lastSpeedL - 50) && (speedR < lastSpeedR + 50 && speedR > lastSpeedR - 50) && timeout < TIMEOUT) {
#ifdef INVERT_R_DIRECTION
pwmr = speedR;
#else
pwmr = -speedR;
#endif
#ifdef INVERT_L_DIRECTION
pwml = -speedL;
#else
pwml = speedL;
#endif
}
lastSpeedL = speedL;
lastSpeedR = speedR;
// ####### POWEROFF BY POWER-BUTTON #######
if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {
enable = 0;
while (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {}
buzzerFreq = 0;
buzzerPattern = 0;
for (int i = 0; i < 8; i++) {
buzzerFreq = i;
HAL_Delay(100);
}
HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, 0);
while(1) {}
}
// ####### BATTERY VOLTAGE #######
if (batteryVoltage < ((float)BAT_LOW_LVL1 * (float)BAT_NUMBER_OF_CELLS) && batteryVoltage > ((float)BAT_LOW_LVL2 * (float)BAT_NUMBER_OF_CELLS)) {
buzzerFreq = 5;
buzzerPattern = 42;
} else if (batteryVoltage < ((float)BAT_LOW_LVL2 * (float)BAT_NUMBER_OF_CELLS) && batteryVoltage > ((float)BAT_LOW_DEAD * (float)BAT_NUMBER_OF_CELLS)) {
buzzerFreq = 5;
buzzerPattern = 6;
} else if (batteryVoltage < ((float)BAT_LOW_DEAD * (float)BAT_NUMBER_OF_CELLS)) {
buzzerPattern = 0;
enable = 0;
for (int i = 0; i < 8; i++) {
buzzerFreq = i;
HAL_Delay(100);
}
HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, 0);
while(1) {}
} else {
buzzerFreq = 0;
buzzerPattern = 0;
}
}
}
/** System Clock Configuration
*/
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_PeriphCLKInitTypeDef PeriphClkInit;
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV8;
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}