hoverboard-firmware-hack-fo.../01_Matlab/99_RecycleBin/pe_electric_engine_dyno_data.m
2019-10-06 15:09:15 +02:00

96 lines
No EOL
4.3 KiB
Matlab

%% Parameters for Electric Engine Dyno Example
% This example shows how to model an electric vehicle dynamometer test.
% The test environment contains an asynchronous machine (ASM) and an
% interior permanent magnet synchronous machine (IPMSM) connected back-
% to-back through a mechanical shaft. Both machines are fed by high-
% voltage batteries through controlled three-phase converters. The 164 kW
% ASM produces the load torque. The 35 kW IPMSM is the electric machine
% under test. The Control Machine Under Test (IPMSM) subsystem controls the
% torque of the IPMSM. The controller includes a multi-rate PI-based
% control structure. The rate of the open-loop torque control is slower
% than the rate of the closed-loop current control. The task scheduling
% for the controller is implemented as a Stateflow(TM) state machine. The
% Control Load Machine (ASM) subsystem uses a single rate to control the
% speed of the ASM. The Visualization subsystem contains scopes that
% allow you to see the simulation results.
% Copyright 2016-2017 The MathWorks, Inc.
%% Machine Parameters
Pmax = 35000; % Maximum power [W]
Tmax = 205; % Maximum torque [N*m]
Ld = 0.00024368; % Stator d-axis inductance [H]
Lq = 0.00029758; % Stator q-axis inductance [H]
L0 = 0.00012184; % Stator zero-sequence inductance [H]
Rs = 0.010087; % Stator resistance per phase [Ohm]
psim = 0.04366; % Permanent magnet flux linkage [Wb]
p = 8; % Number of pole pairs
%% High-Voltage Battery Parameters
Cdc = 0.001; % DC-link capacitor [F]
Vnom = 325; % Nominal DC voltage[V]
V1 = 300; % Voltage V1(< Vnom)[V]
%% PMSM Control Parameters
Ts = 1e-5; % Fundamental sample time [s]
fsw = 10e3; % PMSM drive switching frequency [Hz]
Tsi = 1e-4; % Sample time for current control loops [s]
Kp_id = 0.8779; % Proportional gain id controller
Ki_id = 710.3004; % Integrator gain id controller
Kp_iq = 1.0744; % Proportional gain iq controller
Ki_iq = 1.0615e+03; % Integrator gain iq controller
%% Zero-Cancellation Transfer Functions
numd_id = Tsi/(Kp_id/Ki_id);
dend_id = [1 (Tsi-(Kp_id/Ki_id))/(Kp_id/Ki_id)];
numd_iq = Tsi/(Kp_iq/Ki_iq);
dend_iq = [1 (Tsi-(Kp_iq/Ki_iq))/(Kp_iq/Ki_iq)];
%% Current References
load pe_ipmsm_35kW_ref_idq;
%% ASM Parameters
Pn = 164e3; % Nominal power [W]
Vn = 550; % rms phase-to-phase rated voltage [V]
fn = 60; % Rated frequency [Hz]
Rs2 = 0.0139; % Stator resistance [pu]
Lls = 0.0672; % Stator leakage inductance [pu]
Rr = 0.0112; % Rotor resistance, referred to the stator side [pu]
Llr = 0.0672; % Rotor leakage inductance, referred to the stator side [pu]
Lm = 2.717; % Magnetizing inductance [pu]
Lr = Llr+Lm; % Rotor inductance [pu]
Ls = Lls+Lm; % Stator inductance [pu]
p2 = 2; % Number of pole pairs [pu]
Vbase = Vn/sqrt(3)*sqrt(2); % Base voltage, peak, line-to-neutral [V]
Ibase = Pn/(1.5*Vbase); % Base current, peak [A]
Zbase = Vbase/Ibase; % Base resistance [Ohm]
wbase = 2*pi*fn; % Base electrical radial frequency [rad/s]
Tbase = Pn/(wbase/p2); % Base torque [N*m]
Rss = Rs2*Zbase; % Stator resistance [Ohm]
Xls = Lls*Zbase; % Stator leakage reactance [Ohm]
Rrr = Rr*Zbase; % Rotor resistance, referred to the stator side [Ohm]
Xlr = Llr*Zbase; % Rotor leakage reactance, referred to the stator side[Ohm]
Xm = Lm*Zbase; % Magnetizing reactance [Ohm]
%% ASM Control Parameters
fsw2 = 2e3; % ASM drive switching frequency [Hz]
Tsc = 1/(fsw2*5); % ASM control sample time [s]
% ASM PI parameters
Kp_ids = 1.08;
Ki_ids = 207.58;
Kp_imr = 52.22;
Ki_imr = 2790.51;
Kp_iqs = 1.08;
Ki_iqs = 210.02;
Kp_wr = 10;
Ki_wr = 100;
%% Coupling Parameters
Jm = 0.1234; % Inertia [Kg*m^2]
ce = 25; % Damping coefficient [N*m/(rad/s)]