hoverboard-firmware-hack-fo.../Src/control.c
EmanuelFeru 22984a7fd6 Fixed PPM, PWM timeout
- fixed the general timeout handling: there is no need to disable the MOSFETs timer because it will confuse the BLDC_controller, making him consider the timeout as a false MOSFET defective error.
- renamed `timeout` to `timeoutCnt` for consistency and to ease the search
#61
2020-07-01 19:50:32 +02:00

245 lines
6.9 KiB
C

#include <stdbool.h>
#include <string.h>
#include "stm32f1xx_hal.h"
#include "defines.h"
#include "setup.h"
#include "config.h"
TIM_HandleTypeDef TimHandle;
TIM_HandleTypeDef TimHandle2;
uint8_t ppm_count = 0;
uint8_t pwm_count = 0;
uint32_t timeoutCnt = 0;
uint8_t nunchuk_data[6] = {0};
uint8_t i2cBuffer[2];
extern I2C_HandleTypeDef hi2c2;
extern DMA_HandleTypeDef hdma_i2c2_rx;
extern DMA_HandleTypeDef hdma_i2c2_tx;
#if defined(CONTROL_PPM_LEFT) || defined(CONTROL_PPM_RIGHT)
uint16_t ppm_captured_value[PPM_NUM_CHANNELS + 1] = {500, 500};
uint16_t ppm_captured_value_buffer[PPM_NUM_CHANNELS+1] = {500, 500};
uint32_t ppm_timeout = 0;
bool ppm_valid = true;
void PPM_ISR_Callback(void) {
// Dummy loop with 16 bit count wrap around
uint16_t rc_delay = TIM2->CNT;
TIM2->CNT = 0;
if (rc_delay > 3000) {
if (ppm_valid && ppm_count == PPM_NUM_CHANNELS) {
ppm_timeout = 0;
memcpy(ppm_captured_value, ppm_captured_value_buffer, sizeof(ppm_captured_value));
}
ppm_valid = true;
ppm_count = 0;
}
else if (ppm_count < PPM_NUM_CHANNELS && IN_RANGE(rc_delay, 900, 2100)){
timeoutCnt = 0;
ppm_captured_value_buffer[ppm_count++] = CLAMP(rc_delay, 1000, 2000) - 1000;
} else {
ppm_valid = false;
}
}
// SysTick executes once each ms
void PPM_SysTick_Callback(void) {
ppm_timeout++;
// Stop after 500 ms without PPM signal
if(ppm_timeout > 500) {
int i;
for(i = 0; i < PPM_NUM_CHANNELS; i++) {
ppm_captured_value[i] = 500;
}
ppm_timeout = 0;
}
}
void PPM_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
/*Configure GPIO pin : PA3 */
GPIO_InitStruct.Pin = PPM_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(PPM_PORT, &GPIO_InitStruct);
__HAL_RCC_TIM2_CLK_ENABLE();
TimHandle.Instance = TIM2;
TimHandle.Init.Period = UINT16_MAX;
TimHandle.Init.Prescaler = (SystemCoreClock/DELAY_TIM_FREQUENCY_US)-1;;
TimHandle.Init.ClockDivision = 0;
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
HAL_TIM_Base_Init(&TimHandle);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI3_IRQn);
HAL_TIM_Base_Start(&TimHandle);
}
#endif
#if defined(CONTROL_PWM_LEFT) || defined(CONTROL_PWM_RIGHT)
/*
* Illustration of the PWM functionality
* CH1 ________|‾‾‾‾‾‾‾‾‾‾|________
* CH2 ______________|‾‾‾‾‾‾‾‾‾‾‾|________
* ↑ ↑ ↑ ↑
* TIM2 RST SAVE RC_CH1 RC_CH1
*/
uint16_t pwm_captured_ch1_value = 500;
uint16_t pwm_captured_ch2_value = 500;
uint16_t pwm_CNT_prev_ch1 = 0;
uint16_t pwm_CNT_prev_ch2 = 0;
uint32_t pwm_timeout_ch1 = 0;
uint32_t pwm_timeout_ch2 = 0;
void PWM_ISR_CH1_Callback(void) {
// Dummy loop with 16 bit count wrap around
if(HAL_GPIO_ReadPin(PWM_PORT_CH1, PWM_PIN_CH1)) { // Rising Edge interrupt -> save timer value OR reset timer
if (HAL_GPIO_ReadPin(PWM_PORT_CH2, PWM_PIN_CH2)) {
pwm_CNT_prev_ch1 = TIM2->CNT;
} else {
TIM2->CNT = 0;
pwm_CNT_prev_ch1 = 0;
}
} else { // Falling Edge interrupt -> measure pulse duration
uint16_t rc_signal = TIM2->CNT - pwm_CNT_prev_ch1;
if (IN_RANGE(rc_signal, 900, 2100)){
timeoutCnt = 0;
pwm_timeout_ch1 = 0;
pwm_captured_ch1_value = CLAMP(rc_signal, 1000, 2000) - 1000;
}
}
}
void PWM_ISR_CH2_Callback(void) {
// Dummy loop with 16 bit count wrap around
if(HAL_GPIO_ReadPin(PWM_PORT_CH2, PWM_PIN_CH2)) { // Rising Edge interrupt -> save timer value OR reset timer
if (HAL_GPIO_ReadPin(PWM_PORT_CH1, PWM_PIN_CH1)) {
pwm_CNT_prev_ch2 = TIM2->CNT;
} else {
TIM2->CNT = 0;
pwm_CNT_prev_ch2 = 0;
}
} else { // Falling Edge interrupt -> measure pulse duration
uint16_t rc_signal = TIM2->CNT - pwm_CNT_prev_ch2;
if (IN_RANGE(rc_signal, 900, 2100)){
timeoutCnt = 0;
pwm_timeout_ch2 = 0;
pwm_captured_ch2_value = CLAMP(rc_signal, 1000, 2000) - 1000;
}
}
}
// SysTick executes once each ms
void PWM_SysTick_Callback(void) {
pwm_timeout_ch1++;
pwm_timeout_ch2++;
// Stop after 500 ms without PWM signal
if(pwm_timeout_ch1 > 500) {
pwm_captured_ch1_value = 500;
pwm_timeout_ch1 = 0;
}
if(pwm_timeout_ch2 > 500) {
pwm_captured_ch2_value = 500;
pwm_timeout_ch2 = 0;
}
}
void PWM_Init(void) {
// PWM Timer (TIM2)
__HAL_RCC_TIM2_CLK_ENABLE();
TimHandle.Instance = TIM2;
TimHandle.Init.Period = UINT16_MAX;
TimHandle.Init.Prescaler = (SystemCoreClock/DELAY_TIM_FREQUENCY_US)-1;;
TimHandle.Init.ClockDivision = 0;
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
HAL_TIM_Base_Init(&TimHandle);
// Channel 1 (steering)
GPIO_InitTypeDef GPIO_InitStruct1 = {0};
// Configure GPIO pin : PA2 (Left) or PB10 (Right)
GPIO_InitStruct1.Pin = PWM_PIN_CH1;
GPIO_InitStruct1.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct1.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct1.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(PWM_PORT_CH1, &GPIO_InitStruct1);
// Channel 2 (speed)
GPIO_InitTypeDef GPIO_InitStruct2 = {0};
/*Configure GPIO pin : PA3 (Left) or PB11 (Right) */
GPIO_InitStruct2.Pin = PWM_PIN_CH2;
GPIO_InitStruct2.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct2.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct2.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(PWM_PORT_CH2, &GPIO_InitStruct2);
#ifdef CONTROL_PWM_LEFT
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI2_IRQn);
HAL_NVIC_SetPriority(EXTI3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI3_IRQn);
#endif
#ifdef CONTROL_PWM_RIGHT
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI15_10_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);
#endif
// Start timer
HAL_TIM_Base_Start(&TimHandle);
}
#endif
uint8_t Nunchuk_Ping(void) {
if (HAL_I2C_Master_Receive(&hi2c2,0xA4,(uint8_t*)nunchuk_data, 1, 10) == HAL_OK) {
return 1;
}
return 0;
}
void Nunchuk_Init(void) {
//-- START -- init WiiNunchuk
i2cBuffer[0] = 0xF0;
i2cBuffer[1] = 0x55;
HAL_I2C_Master_Transmit(&hi2c2,0xA4,(uint8_t*)i2cBuffer, 2, 100);
HAL_Delay(10);
i2cBuffer[0] = 0xFB;
i2cBuffer[1] = 0x00;
HAL_I2C_Master_Transmit(&hi2c2,0xA4,(uint8_t*)i2cBuffer, 2, 100);
HAL_Delay(10);
}
void Nunchuk_Read(void) {
i2cBuffer[0] = 0x00;
HAL_I2C_Master_Transmit(&hi2c2,0xA4,(uint8_t*)i2cBuffer, 1, 10);
HAL_Delay(3);
if (HAL_I2C_Master_Receive(&hi2c2,0xA4,(uint8_t*)nunchuk_data, 6, 10) == HAL_OK) {
timeoutCnt = 0;
}
#ifndef TRANSPOTTER
if (timeoutCnt > 3) {
HAL_Delay(50);
Nunchuk_Init();
}
#endif
//setScopeChannel(0, (int)nunchuk_data[0]);
//setScopeChannel(1, (int)nunchuk_data[1]);
//setScopeChannel(2, (int)nunchuk_data[5] & 1);
//setScopeChannel(3, ((int)nunchuk_data[5] >> 1) & 1);
}