hoverboard-firmware-hack-fo.../Src/main.c
2020-01-18 01:15:45 +01:00

1058 lines
39 KiB
C

/*
* This file is part of the hoverboard-firmware-hack project.
*
* Copyright (C) 2017-2018 Rene Hopf <renehopf@mac.com>
* Copyright (C) 2017-2018 Nico Stute <crinq@crinq.de>
* Copyright (C) 2017-2018 Niklas Fauth <niklas.fauth@kit.fail>
* Copyright (C) 2019-2020 Emanuel FERU <aerdronix@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h> // for abs()
#include "stm32f1xx_hal.h"
#include "defines.h"
#include "setup.h"
#include "config.h"
#include "comms.h"
#if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD)
#include "hd44780.h"
#endif
#ifdef VARIANT_TRANSPOTTER
#include "eeprom.h"
#endif
// Matlab includes and defines - from auto-code generation
// ###############################################################################
#include "BLDC_controller.h" /* Model's header file */
#include "rtwtypes.h"
RT_MODEL rtM_Left_; /* Real-time model */
RT_MODEL rtM_Right_; /* Real-time model */
RT_MODEL *const rtM_Left = &rtM_Left_;
RT_MODEL *const rtM_Right = &rtM_Right_;
P rtP_Left; /* Block parameters (auto storage) */
DW rtDW_Left; /* Observable states */
ExtU rtU_Left; /* External inputs */
ExtY rtY_Left; /* External outputs */
P rtP_Right; /* Block parameters (auto storage) */
DW rtDW_Right; /* Observable states */
ExtU rtU_Right; /* External inputs */
ExtY rtY_Right; /* External outputs */
extern uint8_t errCode_Left; /* Global variable to handle Motor error codes */
extern uint8_t errCode_Right; /* Global variable to handle Motor error codes */
// ###############################################################################
void SystemClock_Config(void);
void poweroff(void);
extern TIM_HandleTypeDef htim_left;
extern TIM_HandleTypeDef htim_right;
extern ADC_HandleTypeDef hadc1;
extern ADC_HandleTypeDef hadc2;
extern volatile adc_buf_t adc_buffer;
#if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD)
LCD_PCF8574_HandleTypeDef lcd;
#endif
extern I2C_HandleTypeDef hi2c2;
#if defined(CONTROL_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART2) || defined(DEBUG_SERIAL_USART2) \
|| defined(CONTROL_SERIAL_USART3) || defined(FEEDBACK_SERIAL_USART3) || defined(DEBUG_SERIAL_USART3)
extern UART_HandleTypeDef huart2;
extern UART_HandleTypeDef huart3;
static UART_HandleTypeDef huart;
#endif
#if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD)
extern uint8_t LCDerrorFlag;
#endif
#ifdef VARIANT_TRANSPOTTER
uint8_t nunchuk_connected = 0;
float steering;
int feedforward;
void saveConfig(void);
/* Virtual address defined by the user: 0xFFFF value is prohibited */
uint16_t VirtAddVarTab[NB_OF_VAR] = {0x1337};
uint16_t VarDataTab[NB_OF_VAR] = {0};
uint16_t VarValue = 0;
uint16_t saveValue = 0;
uint16_t counter = 0;
#else
uint8_t nunchuk_connected = 1;
#endif
#if defined(CONTROL_ADC) && defined(ADC_PROTECT_ENA)
static int16_t timeoutCntADC = 0; // Timeout counter for ADC Protection
#endif
static uint8_t timeoutFlagADC = 0; // Timeout Flag for for ADC Protection: 0 = OK, 1 = Problem detected (line disconnected or wrong ADC data)
#if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
#ifdef CONTROL_IBUS
static uint16_t ibus_chksum;
static uint16_t ibus_captured_value[IBUS_NUM_CHANNELS];
typedef struct{
uint8_t start;
uint8_t type;
uint8_t channels[IBUS_NUM_CHANNELS*2];
uint8_t checksuml;
uint8_t checksumh;
} Serialcommand;
#else
typedef struct{
uint16_t start;
int16_t steer;
int16_t speed;
uint16_t checksum;
} Serialcommand;
#endif
static volatile Serialcommand command;
static int16_t timeoutCntSerial = 0; // Timeout counter for Rx Serial command
#endif
static uint8_t timeoutFlagSerial = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
#if defined(FEEDBACK_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART3)
typedef struct{
uint16_t start;
int16_t cmd1;
int16_t cmd2;
int16_t speedR;
int16_t speedL;
int16_t speedR_meas;
int16_t speedL_meas;
int16_t batVoltage;
int16_t boardTemp;
uint16_t checksum;
} SerialFeedback;
static SerialFeedback Feedback;
#endif
#if defined(CONTROL_NUNCHUK) || defined(SUPPORT_NUNCHUK) || defined(CONTROL_PPM) || defined(CONTROL_ADC)
static uint8_t button1, button2;
#endif
uint8_t ctrlModReqRaw = CTRL_MOD_REQ;
uint8_t ctrlModReq = CTRL_MOD_REQ; // Final control mode request
static int cmd1; // normalized input value. -1000 to 1000
static int cmd2; // normalized input value. -1000 to 1000
static int16_t speed; // local variable for speed. -1000 to 1000
#ifndef VARIANT_TRANSPOTTER
static int16_t steer; // local variable for steering. -1000 to 1000
static int16_t steerRateFixdt; // local fixed-point variable for steering rate limiter
static int16_t speedRateFixdt; // local fixed-point variable for speed rate limiter
static int32_t steerFixdt; // local fixed-point variable for steering low-pass filter
static int32_t speedFixdt; // local fixed-point variable for speed low-pass filter
#endif
#ifdef VARIANT_HOVERCAR
static MultipleTap MultipleTapBreak; // define multiple tap functionality for the Break pedal
#endif
static int16_t speedAvg; // average measured speed
static int16_t speedAvgAbs; // average measured speed in absolute
extern volatile int pwml; // global variable for pwm left. -1000 to 1000
extern volatile int pwmr; // global variable for pwm right. -1000 to 1000
extern uint8_t buzzerFreq; // global variable for the buzzer pitch. can be 1, 2, 3, 4, 5, 6, 7...
extern uint8_t buzzerPattern; // global variable for the buzzer pattern. can be 1, 2, 3, 4, 5, 6, 7...
extern uint8_t enable; // global variable for motor enable
extern volatile uint32_t timeout; // global variable for timeout
extern int16_t batVoltage; // global variable for battery voltage
static uint32_t inactivity_timeout_counter;
static uint32_t main_loop_counter;
extern uint8_t nunchuk_data[6];
#ifdef CONTROL_PPM
extern volatile uint16_t ppm_captured_value[PPM_NUM_CHANNELS+1];
#endif
void poweroff(void) {
// if (abs(speed) < 20) { // wait for the speed to drop, then shut down -> this is commented out for SAFETY reasons
buzzerPattern = 0;
enable = 0;
consoleLog("-- Motors disabled --\r\n");
for (int i = 0; i < 8; i++) {
buzzerFreq = (uint8_t)i;
HAL_Delay(100);
}
HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, 0);
while(1) {}
// }
}
int main(void) {
HAL_Init();
__HAL_RCC_AFIO_CLK_ENABLE();
HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
/* System interrupt init*/
/* MemoryManagement_IRQn interrupt configuration */
HAL_NVIC_SetPriority(MemoryManagement_IRQn, 0, 0);
/* BusFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(BusFault_IRQn, 0, 0);
/* UsageFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(UsageFault_IRQn, 0, 0);
/* SVCall_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SVCall_IRQn, 0, 0);
/* DebugMonitor_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DebugMonitor_IRQn, 0, 0);
/* PendSV_IRQn interrupt configuration */
HAL_NVIC_SetPriority(PendSV_IRQn, 0, 0);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
SystemClock_Config();
__HAL_RCC_DMA1_CLK_DISABLE();
MX_GPIO_Init();
MX_TIM_Init();
MX_ADC1_Init();
MX_ADC2_Init();
HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, 1);
HAL_ADC_Start(&hadc1);
HAL_ADC_Start(&hadc2);
// Matlab Init
// ###############################################################################
/* Set BLDC controller parameters */
rtP_Left.b_selPhaABCurrMeas = 1; // Left motor measured current phases = {iA, iB} -> do NOT change
rtP_Left.z_ctrlTypSel = CTRL_TYP_SEL;
rtP_Left.b_diagEna = DIAG_ENA;
rtP_Left.i_max = (I_MOT_MAX * A2BIT_CONV) << 4; // fixdt(1,16,4)
rtP_Left.n_max = N_MOT_MAX << 4; // fixdt(1,16,4)
rtP_Left.b_fieldWeakEna = FIELD_WEAK_ENA;
rtP_Left.id_fieldWeakMax = (FIELD_WEAK_MAX * A2BIT_CONV) << 4; // fixdt(1,16,4)
rtP_Left.a_phaAdvMax = PHASE_ADV_MAX << 4; // fixdt(1,16,4)
rtP_Left.r_fieldWeakHi = FIELD_WEAK_HI << 4; // fixdt(1,16,4)
rtP_Left.r_fieldWeakLo = FIELD_WEAK_LO << 4; // fixdt(1,16,4)
rtP_Right = rtP_Left; // Copy the Left motor parameters to the Right motor parameters
rtP_Right.b_selPhaABCurrMeas = 0; // Left motor measured current phases = {iB, iC} -> do NOT change
/* Pack LEFT motor data into RTM */
rtM_Left->defaultParam = &rtP_Left;
rtM_Left->dwork = &rtDW_Left;
rtM_Left->inputs = &rtU_Left;
rtM_Left->outputs = &rtY_Left;
/* Pack RIGHT motor data into RTM */
rtM_Right->defaultParam = &rtP_Right;
rtM_Right->dwork = &rtDW_Right;
rtM_Right->inputs = &rtU_Right;
rtM_Right->outputs = &rtY_Right;
/* Initialize BLDC controllers */
BLDC_controller_initialize(rtM_Left);
BLDC_controller_initialize(rtM_Right);
// ###############################################################################
for (int i = 8; i >= 0; i--) {
buzzerFreq = (uint8_t)i;
HAL_Delay(100);
}
buzzerFreq = 0;
HAL_GPIO_WritePin(LED_PORT, LED_PIN, 1);
#ifdef VARIANT_TRANSPOTTER
int lastDistance = 0;
enable = 1;
uint8_t checkRemote = 0;
HAL_FLASH_Unlock();
/* EEPROM Init */
EE_Init();
EE_ReadVariable(VirtAddVarTab[0], &saveValue);
HAL_FLASH_Lock();
float setDistance = saveValue / 1000.0;
if (setDistance < 0.2) {
setDistance = 1.0;
}
#endif
#ifdef CONTROL_PPM
PPM_Init();
#endif
#ifdef CONTROL_NUNCHUK
I2C_Init();
Nunchuk_Init();
#endif
#if defined(CONTROL_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART2) || defined(DEBUG_SERIAL_USART2)
UART2_Init();
huart = huart2;
#endif
#if defined(CONTROL_SERIAL_USART3) || defined(FEEDBACK_SERIAL_USART3) || defined(DEBUG_SERIAL_USART3)
UART3_Init();
huart = huart3;
#endif
#if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
HAL_UART_Receive_DMA(&huart, (uint8_t *)&command, sizeof(command));
#endif
#if defined(DEBUG_I2C_LCD) || defined(SUPPORT_LCD)
I2C_Init();
HAL_Delay(50);
lcd.pcf8574.PCF_I2C_ADDRESS = 0x27;
lcd.pcf8574.PCF_I2C_TIMEOUT = 5;
lcd.pcf8574.i2c = hi2c2;
lcd.NUMBER_OF_LINES = NUMBER_OF_LINES_2;
lcd.type = TYPE0;
if(LCD_Init(&lcd)!=LCD_OK){
// error occured
//TODO while(1);
}
LCD_ClearDisplay(&lcd);
HAL_Delay(5);
LCD_SetLocation(&lcd, 0, 0);
#ifdef VARIANT_TRANSPOTTER
LCD_WriteString(&lcd, "TranspOtter V2.1");
#else
LCD_WriteString(&lcd, "Hover V2.0");
#endif
LCD_SetLocation(&lcd, 0, 1);
LCD_WriteString(&lcd, "Initializing...");
#endif
#if defined(VARIANT_TRANSPOTTER) && defined(SUPPORT_LCD)
LCD_ClearDisplay(&lcd);
HAL_Delay(5);
LCD_SetLocation(&lcd, 0, 1);
LCD_WriteString(&lcd, "Bat:");
LCD_SetLocation(&lcd, 8, 1);
LCD_WriteString(&lcd, "V");
LCD_SetLocation(&lcd, 15, 1);
LCD_WriteString(&lcd, "A");
LCD_SetLocation(&lcd, 0, 0);
LCD_WriteString(&lcd, "Len:");
LCD_SetLocation(&lcd, 8, 0);
LCD_WriteString(&lcd, "m(");
LCD_SetLocation(&lcd, 14, 0);
LCD_WriteString(&lcd, "m)");
#endif
int16_t lastSpeedL = 0, lastSpeedR = 0;
int16_t speedL = 0, speedR = 0;
int32_t board_temp_adcFixdt = adc_buffer.temp << 20; // Fixed-point filter output initialized with current ADC converted to fixed-point
int16_t board_temp_adcFilt = adc_buffer.temp;
int16_t board_temp_deg_c;
while(1) {
HAL_Delay(DELAY_IN_MAIN_LOOP); //delay in ms
#ifdef VARIANT_TRANSPOTTER
if(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {
enable = 0;
while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {
HAL_Delay(10);
}
shortBeep(5);
HAL_Delay(300);
if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {
while(HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {
HAL_Delay(10);
}
longBeep(5);
HAL_Delay(350);
poweroff();
} else {
setDistance += 0.25;
if (setDistance > 2.6) {
setDistance = 0.5;
}
shortBeep(setDistance / 0.25);
saveValue = setDistance * 1000;
saveConfig();
}
}
#ifdef GAMETRAK_CONNECTION_NORMAL
uint16_t distance = CLAMP((adc_buffer.l_rx2) - 180, 0, 4095);
steering = (adc_buffer.l_tx2 - 2048) / 2048.0;
#endif
#ifdef GAMETRAK_CONNECTION_ALTERNATE
uint16_t distance = CLAMP((adc_buffer.l_tx2) - 180, 0, 4095);
steering = (adc_buffer.l_rx2 - 2048) / 2048.0;
#endif
feedforward = ((distance - (int)(setDistance * 1345)));
if (nunchuk_connected == 0) {
speedL = speedL * 0.8f + (CLAMP(feedforward + ((steering)*((float)MAX(ABS(feedforward), 50)) * ROT_P), -850, 850) * -0.2f);
speedR = speedR * 0.8f + (CLAMP(feedforward - ((steering)*((float)MAX(ABS(feedforward), 50)) * ROT_P), -850, 850) * -0.2f);
if ((speedL < lastSpeedL + 50 && speedL > lastSpeedL - 50) && (speedR < lastSpeedR + 50 && speedR > lastSpeedR - 50)) {
if (distance - (int)(setDistance * 1345) > 0) {
enable = 1;
}
if (distance - (int)(setDistance * 1345) > -300) {
#ifdef INVERT_R_DIRECTION
pwmr = speedR;
#endif
#ifndef INVERT_R_DIRECTION
pwmr = -speedR;
#endif
#ifdef INVERT_L_DIRECTION
pwml = -speedL;
#endif
#ifndef INVERT_L_DIRECTION
pwml = speedL;
#endif
if (checkRemote) {
if (!HAL_GPIO_ReadPin(LED_PORT, LED_PIN)) {
//enable = 1;
} else {
enable = 0;
}
}
} else {
enable = 0;
}
}
lastSpeedL = speedL;
lastSpeedR = speedR;
timeout = 0;
}
#endif
#if defined(CONTROL_NUNCHUK) || defined(SUPPORT_NUNCHUK)
if (nunchuk_connected != 0) {
Nunchuk_Read();
cmd1 = CLAMP((nunchuk_data[0] - 127) * 8, INPUT_MIN, INPUT_MAX); // x - axis. Nunchuk joystick readings range 30 - 230
cmd2 = CLAMP((nunchuk_data[1] - 128) * 8, INPUT_MIN, INPUT_MAX); // y - axis
button1 = (uint8_t)nunchuk_data[5] & 1;
button2 = (uint8_t)(nunchuk_data[5] >> 1) & 1;
}
#endif
#ifdef CONTROL_PPM
cmd1 = CLAMP((ppm_captured_value[0] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX);
cmd2 = CLAMP((ppm_captured_value[1] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX);
button1 = ppm_captured_value[5] > INPUT_MID;
button2 = 0;
// float scale = ppm_captured_value[2] / 1000.0f; // not used for now, uncomment if needed
#endif
#ifdef CONTROL_ADC
// ADC values range: 0-4095, see ADC-calibration in config.h
#ifdef ADC1_MID_POT
cmd1 = CLAMP((adc_buffer.l_tx2 - ADC1_MID) * INPUT_MAX / (ADC1_MAX - ADC1_MID), 0, INPUT_MAX)
-CLAMP((ADC1_MID - adc_buffer.l_tx2) * INPUT_MAX / (ADC1_MID - ADC1_MIN), 0, INPUT_MAX); // ADC1
#else
cmd1 = CLAMP((adc_buffer.l_tx2 - ADC1_MIN) * INPUT_MAX / (ADC1_MAX - ADC1_MIN), 0, INPUT_MAX); // ADC1
#endif
#ifdef ADC2_MID_POT
cmd2 = CLAMP((adc_buffer.l_rx2 - ADC2_MID) * INPUT_MAX / (ADC2_MAX - ADC2_MID), 0, INPUT_MAX)
-CLAMP((ADC2_MID - adc_buffer.l_rx2) * INPUT_MAX / (ADC2_MID - ADC2_MIN), 0, INPUT_MAX); // ADC2
#else
cmd2 = CLAMP((adc_buffer.l_rx2 - ADC2_MIN) * INPUT_MAX / (ADC2_MAX - ADC2_MIN), 0, INPUT_MAX); // ADC2
#endif
#ifdef ADC_PROTECT_ENA
if (adc_buffer.l_tx2 >= (ADC1_MIN - ADC_PROTECT_THRESH) && adc_buffer.l_tx2 <= (ADC1_MAX + ADC_PROTECT_THRESH) &&
adc_buffer.l_rx2 >= (ADC2_MIN - ADC_PROTECT_THRESH) && adc_buffer.l_rx2 <= (ADC2_MAX + ADC_PROTECT_THRESH)) {
if (timeoutFlagADC) { // Check for previous timeout flag
if (timeoutCntADC-- <= 0) // Timeout de-qualification
timeoutFlagADC = 0; // Timeout flag cleared
} else {
timeoutCntADC = 0; // Reset the timeout counter
}
} else {
if (timeoutCntADC++ >= ADC_PROTECT_TIMEOUT) { // Timeout qualification
timeoutFlagADC = 1; // Timeout detected
timeoutCntADC = ADC_PROTECT_TIMEOUT; // Limit timout counter value
}
}
if (timeoutFlagADC) { // In case of timeout bring the system to a Safe State
ctrlModReq = 0; // OPEN_MODE request. This will bring the motor power to 0 in a controlled way
cmd1 = 0;
cmd2 = 0;
} else {
ctrlModReq = ctrlModReqRaw; // Follow the Mode request
}
#endif
// use ADCs as button inputs:
button1 = (uint8_t)(adc_buffer.l_tx2 > 2000); // ADC1
button2 = (uint8_t)(adc_buffer.l_rx2 > 2000); // ADC2
timeout = 0;
#endif
#if defined CONTROL_SERIAL_USART2 || defined CONTROL_SERIAL_USART3
// Handle received data validity, timeout and fix out-of-sync if necessary
#ifdef CONTROL_IBUS
ibus_chksum = 0xFFFF - IBUS_LENGTH - IBUS_COMMAND;
for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i++) {
ibus_chksum -= command.channels[i];
}
if (command.start == IBUS_LENGTH && command.type == IBUS_COMMAND && ibus_chksum == (uint16_t)((command.checksumh << 8) + command.checksuml)) {
if (timeoutFlagSerial) { // Check for previous timeout flag
if (timeoutCntSerial-- <= 0) // Timeout de-qualification
timeoutFlagSerial = 0; // Timeout flag cleared
} else {
for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i+=2) {
ibus_captured_value[(i/2)] = CLAMP(command.channels[i] + (command.channels[i+1] << 8) - 1000, 0, INPUT_MAX); // 1000-2000 -> 0-1000
}
cmd1 = CLAMP((ibus_captured_value[0] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX);
cmd2 = CLAMP((ibus_captured_value[1] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX);
command.start = 0xFF; // Change the Start Frame for timeout detection in the next cycle
timeoutCntSerial = 0; // Reset the timeout counter
}
} else {
if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification
timeoutFlagSerial = 1; // Timeout detected
timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value
}
// Check periodically the received Start Frame. If it is NOT OK, most probably we are out-of-sync. Try to re-sync by reseting the DMA
if (main_loop_counter % 25 == 0 && command.start != IBUS_LENGTH && command.start != 0xFF) {
HAL_UART_DMAStop(&huart);
HAL_UART_Receive_DMA(&huart, (uint8_t *)&command, sizeof(command));
}
}
#else
if (command.start == START_FRAME && command.checksum == (uint16_t)(command.start ^ command.steer ^ command.speed)) {
if (timeoutFlagSerial) { // Check for previous timeout flag
if (timeoutCntSerial-- <= 0) // Timeout de-qualification
timeoutFlagSerial = 0; // Timeout flag cleared
} else {
cmd1 = CLAMP((int16_t)command.steer, INPUT_MIN, INPUT_MAX);
cmd2 = CLAMP((int16_t)command.speed, INPUT_MIN, INPUT_MAX);
command.start = 0xFFFF; // Change the Start Frame for timeout detection in the next cycle
timeoutCntSerial = 0; // Reset the timeout counter
}
} else {
if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification
timeoutFlagSerial = 1; // Timeout detected
timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value
}
// Check periodically the received Start Frame. If it is NOT OK, most probably we are out-of-sync. Try to re-sync by reseting the DMA
if (main_loop_counter % 25 == 0 && command.start != START_FRAME && command.start != 0xFFFF) {
HAL_UART_DMAStop(&huart);
HAL_UART_Receive_DMA(&huart, (uint8_t *)&command, sizeof(command));
}
}
#endif
if (timeoutFlagSerial) { // In case of timeout bring the system to a Safe State
ctrlModReq = 0; // OPEN_MODE request. This will bring the motor power to 0 in a controlled way
cmd1 = 0;
cmd2 = 0;
} else {
ctrlModReq = ctrlModReqRaw; // Follow the Mode request
}
timeout = 0;
#endif
// Calculate measured average speed. The minus sign (-) is beacause motors spin in opposite directions
#if !defined(INVERT_L_DIRECTION) && !defined(INVERT_R_DIRECTION)
speedAvg = ( rtY_Left.n_mot - rtY_Right.n_mot) / 2;
#elif !defined(INVERT_L_DIRECTION) && defined(INVERT_R_DIRECTION)
speedAvg = ( rtY_Left.n_mot + rtY_Right.n_mot) / 2;
#elif defined(INVERT_L_DIRECTION) && !defined(INVERT_R_DIRECTION)
speedAvg = (-rtY_Left.n_mot - rtY_Right.n_mot) / 2;
#elif defined(INVERT_L_DIRECTION) && defined(INVERT_R_DIRECTION)
speedAvg = (-rtY_Left.n_mot + rtY_Right.n_mot) / 2;
#endif
// Handle the case when SPEED_COEFFICIENT sign is negative (which is when most significant bit is 1)
if ((SPEED_COEFFICIENT & (1 << 16)) >> 16) {
speedAvg = -speedAvg;
}
speedAvgAbs = abs(speedAvg);
#ifndef VARIANT_TRANSPOTTER
// ####### MOTOR ENABLING: Only if the initial input is very small (for SAFETY) #######
if (enable == 0 && (!errCode_Left && !errCode_Right) && (cmd1 > -50 && cmd1 < 50) && (cmd2 > -50 && cmd2 < 50)){
shortBeep(6); // make 2 beeps indicating the motor enable
shortBeep(4); HAL_Delay(100);
enable = 1; // enable motors
}
// ####### VARIANT_HOVERCAR #######
#ifdef VARIANT_HOVERCAR
// Calculate speed Blend, a number between [0, 1] in fixdt(0,16,15)
uint16_t speedBlend;
speedBlend = (uint16_t)(((CLAMP(speedAvgAbs,30,90) - 30) << 15) / 60); // speedBlend [0,1] is within [30 rpm, 90rpm]
// Check if Hovercar is physically close to standstill to enable Double tap detection on Brake pedal for Reverse functionality
if (speedAvgAbs < 20) {
multipleTapDet(cmd1, HAL_GetTick(), &MultipleTapBreak); // Break pedal in this case is "cmd1" variable
}
// If Brake pedal (cmd1) is pressed, bring to 0 also the Throttle pedal (cmd2) to avoid "Double pedal" driving
if (cmd1 > 20) {
cmd2 = (int16_t)((cmd2 * speedBlend) >> 15);
}
// Make sure the Brake pedal is opposite to the direction of motion AND it goes to 0 as we reach standstill (to avoid Reverse driving by Brake pedal)
if (speedAvg > 0) {
cmd1 = (int16_t)((-cmd1 * speedBlend) >> 15);
} else {
cmd1 = (int16_t)(( cmd1 * speedBlend) >> 15);
}
#endif
// ####### LOW-PASS FILTER #######
rateLimiter16(cmd1, RATE, &steerRateFixdt);
rateLimiter16(cmd2, RATE, &speedRateFixdt);
filtLowPass32(steerRateFixdt >> 4, FILTER, &steerFixdt);
filtLowPass32(speedRateFixdt >> 4, FILTER, &speedFixdt);
steer = (int16_t)(steerFixdt >> 20); // convert fixed-point to integer
speed = (int16_t)(speedFixdt >> 20); // convert fixed-point to integer
// ####### VARIANT_HOVERCAR #######
#ifdef VARIANT_HOVERCAR
if (!MultipleTapBreak.b_multipleTap) { // Check driving direction
speed = steer + speed; // Forward driving
} else {
speed = steer - speed; // Reverse driving
}
#endif
// ####### MIXER #######
// speedR = CLAMP((int)(speed * SPEED_COEFFICIENT - steer * STEER_COEFFICIENT), -1000, 1000);
// speedL = CLAMP((int)(speed * SPEED_COEFFICIENT + steer * STEER_COEFFICIENT), -1000, 1000);
mixerFcn(speed << 4, steer << 4, &speedR, &speedL); // This function implements the equations above
#ifdef ADDITIONAL_CODE
ADDITIONAL_CODE;
#endif
// ####### SET OUTPUTS (if the target change is less than +/- 50) #######
if ((speedL > lastSpeedL-50 && speedL < lastSpeedL+50) && (speedR > lastSpeedR-50 && speedR < lastSpeedR+50) && timeout < TIMEOUT) {
#ifdef INVERT_R_DIRECTION
pwmr = speedR;
#else
pwmr = -speedR;
#endif
#ifdef INVERT_L_DIRECTION
pwml = -speedL;
#else
pwml = speedL;
#endif
}
#endif
lastSpeedL = speedL;
lastSpeedR = speedR;
#ifdef VARIANT_TRANSPOTTER
if (timeout > TIMEOUT) {
pwml = 0;
pwmr = 0;
enable = 0;
#ifdef SUPPORT_LCD
LCD_SetLocation(&lcd, 0, 0);
LCD_WriteString(&lcd, "Len:");
LCD_SetLocation(&lcd, 8, 0);
LCD_WriteString(&lcd, "m(");
LCD_SetLocation(&lcd, 14, 0);
LCD_WriteString(&lcd, "m)");
#endif
HAL_Delay(1000);
nunchuk_connected = 0;
}
if ((distance / 1345.0) - setDistance > 0.5 && (lastDistance / 1345.0) - setDistance > 0.5) { // Error, robot too far away!
enable = 0;
longBeep(5);
#ifdef SUPPORT_LCD
LCD_ClearDisplay(&lcd);
HAL_Delay(5);
LCD_SetLocation(&lcd, 0, 0);
LCD_WriteString(&lcd, "Emergency Off!");
LCD_SetLocation(&lcd, 0, 1);
LCD_WriteString(&lcd, "Keeper too fast.");
#endif
poweroff();
}
#ifdef SUPPORT_NUNCHUK
if (counter % 500 == 0) {
if (nunchuk_connected == 0 && enable == 0) {
if (Nunchuk_Ping()) {
HAL_Delay(500);
Nunchuk_Init();
#ifdef SUPPORT_LCD
LCD_SetLocation(&lcd, 0, 0);
LCD_WriteString(&lcd, "Nunchuk Control");
#endif
timeout = 0;
HAL_Delay(1000);
nunchuk_connected = 1;
}
}
}
#endif
#ifdef SUPPORT_LCD
if (counter % 100 == 0) {
if (LCDerrorFlag == 1 && enable == 0) {
} else {
if (nunchuk_connected == 0) {
LCD_SetLocation(&lcd, 4, 0);
LCD_WriteFloat(&lcd,distance/1345.0,2);
LCD_SetLocation(&lcd, 10, 0);
LCD_WriteFloat(&lcd,setDistance,2);
}
LCD_SetLocation(&lcd, 4, 1);
LCD_WriteFloat(&lcd,batVoltage, 1);
LCD_SetLocation(&lcd, 11, 1);
//LCD_WriteFloat(&lcd,MAX(ABS(currentR), ABS(currentL)),2);
}
}
#endif
counter++;
#endif
// ####### CALC BOARD TEMPERATURE #######
filtLowPass32(adc_buffer.temp, TEMP_FILT_COEF, &board_temp_adcFixdt);
board_temp_adcFilt = (int16_t)(board_temp_adcFixdt >> 20); // convert fixed-point to integer
board_temp_deg_c = (TEMP_CAL_HIGH_DEG_C - TEMP_CAL_LOW_DEG_C) * (board_temp_adcFilt - TEMP_CAL_LOW_ADC) / (TEMP_CAL_HIGH_ADC - TEMP_CAL_LOW_ADC) + TEMP_CAL_LOW_DEG_C;
if (main_loop_counter % 25 == 0) { // Send data periodically
// ####### DEBUG SERIAL OUT #######
#if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3)
#ifdef CONTROL_ADC
setScopeChannel(0, (int16_t)adc_buffer.l_tx2); // 1: ADC1
setScopeChannel(1, (int16_t)adc_buffer.l_rx2); // 2: ADC2
#endif
setScopeChannel(2, (int16_t)speedR); // 3: output command: [-1000, 1000]
setScopeChannel(3, (int16_t)speedL); // 4: output command: [-1000, 1000]
setScopeChannel(4, (int16_t)adc_buffer.batt1); // 5: for battery voltage calibration
setScopeChannel(5, (int16_t)(batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC)); // 6: for verifying battery voltage calibration
setScopeChannel(6, (int16_t)board_temp_adcFilt); // 7: for board temperature calibration
setScopeChannel(7, (int16_t)board_temp_deg_c); // 8: for verifying board temperature calibration
consoleScope();
// ####### FEEDBACK SERIAL OUT #######
#elif defined(FEEDBACK_SERIAL_USART2) || defined(FEEDBACK_SERIAL_USART3)
if(UART_DMA_CHANNEL->CNDTR == 0) {
Feedback.start = (uint16_t)START_FRAME;
Feedback.cmd1 = (int16_t)cmd1;
Feedback.cmd2 = (int16_t)cmd2;
Feedback.speedR = (int16_t)speedR;
Feedback.speedL = (int16_t)speedL;
Feedback.speedR_meas = (int16_t)rtY_Left.n_mot;
Feedback.speedL_meas = (int16_t)rtY_Right.n_mot;
Feedback.batVoltage = (int16_t)(batVoltage * BAT_CALIB_REAL_VOLTAGE / BAT_CALIB_ADC);
Feedback.boardTemp = (int16_t)board_temp_deg_c;
Feedback.checksum = (uint16_t)(Feedback.start ^ Feedback.cmd1 ^ Feedback.cmd2 ^ Feedback.speedR ^ Feedback.speedL
^ Feedback.speedR_meas ^ Feedback.speedL_meas ^ Feedback.batVoltage ^ Feedback.boardTemp);
UART_DMA_CHANNEL->CCR &= ~DMA_CCR_EN;
UART_DMA_CHANNEL->CNDTR = sizeof(Feedback);
UART_DMA_CHANNEL->CMAR = (uint32_t)&Feedback;
UART_DMA_CHANNEL->CCR |= DMA_CCR_EN;
}
#endif
}
HAL_GPIO_TogglePin(LED_PORT, LED_PIN);
// ####### POWEROFF BY POWER-BUTTON #######
if (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {
enable = 0; // disable motors
while (HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN)) {} // wait until button is released
if(__HAL_RCC_GET_FLAG(RCC_FLAG_SFTRST)) { // do not power off after software reset (from a programmer/debugger)
__HAL_RCC_CLEAR_RESET_FLAGS(); // clear reset flags
} else {
poweroff(); // release power-latch
}
}
// ####### BEEP AND EMERGENCY POWEROFF #######
if (errCode_Left || errCode_Right) { // disable motors and beep in case of Motor error - fast beep
enable = 0;
buzzerFreq = 8;
buzzerPattern = 1;
} else if ((TEMP_POWEROFF_ENABLE && board_temp_deg_c >= TEMP_POWEROFF && speedAvgAbs < 20) || (batVoltage < BAT_LOW_DEAD && speedAvgAbs < 20)) { // poweroff before mainboard burns OR low bat 3
poweroff();
} else if (TEMP_WARNING_ENABLE && board_temp_deg_c >= TEMP_WARNING) { // beep if mainboard gets hot
buzzerFreq = 4;
buzzerPattern = 1;
} else if (batVoltage < BAT_LOW_LVL1 && batVoltage >= BAT_LOW_LVL2 && BAT_LOW_LVL1_ENABLE) { // low bat 1: slow beep
buzzerFreq = 5;
buzzerPattern = 42;
} else if (batVoltage < BAT_LOW_LVL2 && batVoltage >= BAT_LOW_DEAD && BAT_LOW_LVL2_ENABLE) { // low bat 2: fast beep
buzzerFreq = 5;
buzzerPattern = 6;
} else if (timeoutFlagADC || timeoutFlagSerial) { // beep in case of ADC or Serial timeout - fast beep
buzzerFreq = 24;
buzzerPattern = 1;
} else if (BEEPS_BACKWARD && speed < -50 && speedAvg < 0) { // backward beep
buzzerFreq = 5;
buzzerPattern = 1;
} else { // do not beep
buzzerFreq = 0;
buzzerPattern = 0;
}
// ####### INACTIVITY TIMEOUT #######
if (abs(speedL) > 50 || abs(speedR) > 50) {
inactivity_timeout_counter = 0;
} else {
inactivity_timeout_counter ++;
}
if (inactivity_timeout_counter > (INACTIVITY_TIMEOUT * 60 * 1000) / (DELAY_IN_MAIN_LOOP + 1)) { // rest of main loop needs maybe 1ms
poweroff();
}
main_loop_counter++;
timeout++;
}
}
#ifdef VARIANT_TRANSPOTTER
void saveConfig() {
HAL_FLASH_Unlock();
EE_WriteVariable(VirtAddVarTab[0], saveValue);
HAL_FLASH_Lock();
}
#endif
void longBeep(uint8_t freq){
buzzerFreq = freq;
HAL_Delay(500);
buzzerFreq = 0;
}
void shortBeep(uint8_t freq){
buzzerFreq = freq;
HAL_Delay(100);
buzzerFreq = 0;
}
// ===========================================================
/* Low pass filter fixed-point 32 bits: fixdt(1,32,20)
* Max: 2047.9375
* Min: -2048
* Res: 0.0625
*
* Inputs: u = int16
* Outputs: y = fixdt(1,32,20)
* Parameters: coef = fixdt(0,16,16) = [0,65535U]
*
* Example:
* If coef = 0.8 (in floating point), then coef = 0.8 * 2^16 = 52429 (in fixed-point)
* filtLowPass16(u, 52429, &y);
* yint = (int16_t)(y >> 20); // the integer output is the fixed-point ouput shifted by 20 bits
*/
void filtLowPass32(int16_t u, uint16_t coef, int32_t *y)
{
int32_t tmp;
tmp = (int16_t)(u << 4) - (*y >> 16);
tmp = CLAMP(tmp, -32768, 32767); // Overflow protection
*y = coef * tmp + (*y);
}
// ===========================================================
/* mixerFcn(rtu_speed, rtu_steer, &rty_speedR, &rty_speedL);
* Inputs: rtu_speed, rtu_steer = fixdt(1,16,4)
* Outputs: rty_speedR, rty_speedL = int16_t
* Parameters: SPEED_COEFFICIENT, STEER_COEFFICIENT = fixdt(0,16,14)
*/
void mixerFcn(int16_t rtu_speed, int16_t rtu_steer, int16_t *rty_speedR, int16_t *rty_speedL)
{
int16_t prodSpeed;
int16_t prodSteer;
int32_t tmp;
prodSpeed = (int16_t)((rtu_speed * (int16_t)SPEED_COEFFICIENT) >> 14);
prodSteer = (int16_t)((rtu_steer * (int16_t)STEER_COEFFICIENT) >> 14);
tmp = prodSpeed - prodSteer;
tmp = CLAMP(tmp, -32768, 32767); // Overflow protection
*rty_speedR = (int16_t)(tmp >> 4); // Convert from fixed-point to int
*rty_speedR = CLAMP(*rty_speedR, INPUT_MIN, INPUT_MAX);
tmp = prodSpeed + prodSteer;
tmp = CLAMP(tmp, -32768, 32767); // Overflow protection
*rty_speedL = (int16_t)(tmp >> 4); // Convert from fixed-point to int
*rty_speedL = CLAMP(*rty_speedL, INPUT_MIN, INPUT_MAX);
}
// ===========================================================
/* rateLimiter16(int16_t u, int16_t rate, int16_t *y);
* Inputs: u = int16
* Outputs: y = fixdt(1,16,4)
* Parameters: rate = fixdt(1,16,4) = [0, 32767] Do NOT make rate negative (>32767)
*/
void rateLimiter16(int16_t u, int16_t rate, int16_t *y)
{
int16_t q0;
int16_t q1;
q0 = (u << 4) - *y;
if (q0 > rate) {
q0 = rate;
} else {
q1 = -rate;
if (q0 < q1) {
q0 = q1;
}
}
*y = q0 + *y;
}
// ===========================================================
/* multipleTapDet(int16_t u, uint32_t timeNow, MultipleTap *x)
* This function detects multiple tap presses, such as double tapping, triple tapping, etc.
* Inputs: u = int16_t (input signal); timeNow = uint32_t (current time)
* Outputs: x->b_multipleTap (get the output here)
*/
void multipleTapDet(int16_t u, uint32_t timeNow, MultipleTap *x)
{
uint8_t b_timeout;
uint8_t b_hyst;
uint8_t b_pulse;
uint8_t z_pulseCnt;
uint8_t z_pulseCntRst;
uint32_t t_time;
// Detect hysteresis
if (x->b_hysteresis) {
b_hyst = (u > MULTIPLE_TAP_LO);
} else {
b_hyst = (u > MULTIPLE_TAP_HI);
}
// Detect pulse
b_pulse = (b_hyst != x->b_hysteresis);
// Save time when first pulse is detected
if (b_hyst && b_pulse && (x->z_pulseCntPrev == 0)) {
t_time = timeNow;
} else {
t_time = x->t_timePrev;
}
// Create timeout boolean
b_timeout = (timeNow - t_time > MULTIPLE_TAP_TIMEOUT);
// Create pulse counter
if ((!b_hyst) && (x->z_pulseCntPrev == 0)) {
z_pulseCnt = 0U;
} else {
z_pulseCnt = b_pulse;
}
// Reset counter if we detected complete tap presses OR there is a timeout
if ((x->z_pulseCntPrev >= MULTIPLE_TAP_NR) || b_timeout) {
z_pulseCntRst = 0U;
} else {
z_pulseCntRst = x->z_pulseCntPrev;
}
z_pulseCnt = z_pulseCnt + z_pulseCntRst;
// Check if complete tap presses are detected AND no timeout
if ((z_pulseCnt >= MULTIPLE_TAP_NR) && (!b_timeout)) {
x->b_multipleTap = !x->b_multipleTap; // Toggle output
}
// Update states
x->z_pulseCntPrev = z_pulseCnt;
x->b_hysteresis = b_hyst;
x->t_timePrev = t_time;
}
// ===========================================================
/** System Clock Configuration
*/
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_PeriphCLKInitTypeDef PeriphClkInit;
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
// PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV8; // 8 MHz
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV4; // 16 MHz
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}