From d2c846cda970d3c167978ee8befd4d2a9a462742 Mon Sep 17 00:00:00 2001 From: EmanuelFeru Date: Wed, 8 Jan 2020 19:16:34 +0100 Subject: [PATCH] Updated IBUS variant - separated the implementation from USART implementation for more clarity - fixed warnings - minor visual updates --- Inc/config.h | 25 ++++++------- README.md | 5 +-- Src/control.c | 2 -- Src/main.c | 99 +++++++++++++++++++++++++++++---------------------- 4 files changed, 73 insertions(+), 58 deletions(-) diff --git a/Inc/config.h b/Inc/config.h index fc441d7..78425f4 100644 --- a/Inc/config.h +++ b/Inc/config.h @@ -10,6 +10,7 @@ //#define VARIANT_USART3 // Variant for Serial control via USART3 input //#define VARIANT_NUNCHUCK // Variant for Nunchuck controlled vehicle build //#define VARIANT_PPM // Variant for RC-Remote with PPM-Sum Signal + //#define VARIANT_IBUS // Variant for RC-Remotes with FLYSKY IBUS //#define VARIANT_HOVERCAR // Variant for HOVERCAR build //#define VARIANT_TRANSPOTTER // Variant for TRANSPOTTER build https://github.com/NiklasFauth/hoverboard-firmware-hack/wiki/Build-Instruction:-TranspOtter https://hackaday.io/project/161891-transpotter-ng #endif @@ -61,7 +62,7 @@ * Then you can verify voltage on value 6 (to get calibrated voltage multiplied by 100). */ #define BAT_FILT_COEF 655 // battery voltage filter coefficient in fixed-point. coef_fixedPoint = coef_floatingPoint * 2^16. In this case 655 = 0.01 * 2^16 -#define BAT_CALIB_REAL_VOLTAGE 3970 // input voltage measured by multimeter (multiplied by 100). In this case 43.00 V * 100 = 4300 +#define BAT_CALIB_REAL_VOLTAGE 3970 // input voltage measured by multimeter (multiplied by 100). For example 43.00 V * 100 = 4300 #define BAT_CALIB_ADC 1492 // adc-value measured by mainboard (value nr 5 on UART debug output) #define BAT_CELLS 10 // battery number of cells. Normal Hoverboard battery: 10s @@ -133,18 +134,18 @@ // #define DEBUG_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuck or lcd) is used! #endif -#ifdef VARIANT_IBUS - // ###### CONTROL VIA RC REMOTE WITH FLYSKY IBUS PROTOCOL ###### - // left sensor board cable. Channel 1: steering, Channel 2: speed. - #define CONTROL_IBUS // use IBUS as input - #define IBUS_NUM_CHANNELS 14 // total number of IBUS channels to receive, even if they are not used. - #define IBUS_LENGTH 0x20 - #define IBUS_COMMAND 0x40 +// ###### CONTROL VIA RC REMOTE WITH FLYSKY IBUS PROTOCOL ###### +/* Connected to Left sensor board cable. Channel 1: steering, Channel 2: speed. */ +#ifdef VARIANT_IBUS + #define CONTROL_IBUS // use IBUS as input + #define IBUS_NUM_CHANNELS 14 // total number of IBUS channels to receive, even if they are not used. + #define IBUS_LENGTH 0x20 + #define IBUS_COMMAND 0x40 - #define CONTROL_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! For Arduino control check the hoverSerial.ino - #define FEEDBACK_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! #undef USART2_BAUD - #define USART2_BAUD 115200 + #define USART2_BAUD 115200 + #define CONTROL_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! + #define FEEDBACK_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used! #endif @@ -156,8 +157,8 @@ #define UART_DMA_CHANNEL DMA1_Channel2 #endif +// ###### CONTROL VIA RC REMOTE ###### #ifdef VARIANT_PPM - // ###### CONTROL VIA RC REMOTE ###### // left sensor board cable. Channel 1: steering, Channel 2: speed. #define CONTROL_PPM // use PPM-Sum as input. disable CONTROL_SERIAL_USART2! #define PPM_NUM_CHANNELS 6 // total number of PPM channels to receive, even if they are not used. diff --git a/README.md b/README.md index 3f3b77f..7a8fd17 100644 --- a/README.md +++ b/README.md @@ -156,10 +156,11 @@ Most robust way for input is to use the ADC and potis. It works well even on 1m This firmware offers currently these variants (selectable in [platformio.ini](/platformio.ini) and / or [/Inc/config.h](/Inc/config.h)): - **VARIANT_ADC**: In this variant the motors are controlled by two potentiometers connected to the Left sensor cable (long wired) - **VARIANT_USART3**: In this variant the motors are controlled via serial protocol on USART3 right sensor cable (short wired). The commands can be sent from an Arduino. Check out the [hoverserial.ino](/02_Arduino/hoverserial) as an example sketch. +- **VARIANT_NUNCHUCK**: Wii Nunchuck offers one hand control for throttle, braking and steering. This was one of the first input device used for electric armchairs or bottle crates. +- **VARIANT_PPM**: This is when you want to use a RC remote control with PPM Sum signal +- **VARIANT_IBUS**: This is when you want to use a RC remote control with Flysky IBUS protocol connected to the Left sensor cable. - **VARIANT_HOVERCAR**: In this variant the motors are controlled by two pedals brake and throttle. Reverse is engaged by double tapping on the brake pedal at standstill. - **VARIANT_TRANSPOTTER**: This build is for transpotter which is a hoverboard based transportation system. For more details on how to build it check [here](https://github.com/NiklasFauth/hoverboard-firmware-hack/wiki/Build-Instruction:-TranspOtter) and [here](https://hackaday.io/project/161891-transpotter-ng). -- **VARIANT_NUNCHUCK**: Wii Nunchuck offers one hand control for throttle, braking and steering. This was one of the first input device used for electric armchairs or bottle crates. -- **VARIANT_PPM**: This is when you want to use a RC remote control with PPM Sum singnal Of course the firmware can be further customized for other needs or projects. diff --git a/Src/control.c b/Src/control.c index 4306954..b2f3e66 100644 --- a/Src/control.c +++ b/Src/control.c @@ -112,8 +112,6 @@ void Nunchuck_Read(void) { HAL_Delay(3); if (HAL_I2C_Master_Receive(&hi2c2,0xA4,(uint8_t*)nunchuck_data, 6, 10) == HAL_OK) { timeout = 0; - } else { - timeout++; } #ifndef TRANSPOTTER diff --git a/Src/main.c b/Src/main.c index cf228c1..873ba5e 100644 --- a/Src/main.c +++ b/Src/main.c @@ -145,7 +145,6 @@ typedef struct{ } SerialFeedback; static SerialFeedback Feedback; #endif -static uint8_t serialSendCnt; // serial send counter #if defined(CONTROL_NUNCHUCK) || defined(SUPPORT_NUNCHUCK) || defined(CONTROL_PPM) || defined(CONTROL_ADC) static uint8_t button1, button2; @@ -181,6 +180,7 @@ extern volatile uint32_t timeout; // global variable for timeout extern int16_t batVoltage; // global variable for battery voltage static uint32_t inactivity_timeout_counter; +static uint32_t main_loop_counter; extern uint8_t nunchuck_data[6]; #ifdef CONTROL_PPM @@ -524,50 +524,64 @@ int main(void) { // Handle received data validity, timeout and fix out-of-sync if necessary #ifdef CONTROL_IBUS - ibus_chksum = 0xFFFF - IBUS_LENGTH - IBUS_COMMAND; - for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i ++) { - ibus_chksum -= command.channels[i]; - } - if (command.start == IBUS_LENGTH && command.type == IBUS_COMMAND && ibus_chksum == ( command.checksumh << 8) + command.checksuml ) { - #else - if (command.start == START_FRAME && command.checksum == (uint16_t)(command.start ^ command.steer ^ command.speed)) { - #endif - if (timeoutFlagSerial) { // Check for previous timeout flag - if (timeoutCntSerial-- <= 0) // Timeout de-qualification - timeoutFlagSerial = 0; // Timeout flag cleared - } else { - #ifdef CONTROL_IBUS - for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i +=2) { - ibus_captured_value[(i/2)] = CLAMP( command.channels[i] + (command.channels[i+1] << 8) - 1000, 0, INPUT_MAX); // 1000-2000 -> 0-1000 + ibus_chksum = 0xFFFF - IBUS_LENGTH - IBUS_COMMAND; + for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i++) { + ibus_chksum -= command.channels[i]; + } + if (command.start == IBUS_LENGTH && command.type == IBUS_COMMAND && ibus_chksum == (uint16_t)((command.checksumh << 8) + command.checksuml)) { + if (timeoutFlagSerial) { // Check for previous timeout flag + if (timeoutCntSerial-- <= 0) // Timeout de-qualification + timeoutFlagSerial = 0; // Timeout flag cleared + } else { + for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i+=2) { + ibus_captured_value[(i/2)] = CLAMP(command.channels[i] + (command.channels[i+1] << 8) - 1000, 0, INPUT_MAX); // 1000-2000 -> 0-1000 + } + cmd1 = CLAMP((ibus_captured_value[0] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX); + cmd2 = CLAMP((ibus_captured_value[1] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX); + command.start = 0xFF; // Change the Start Frame for timeout detection in the next cycle + timeoutCntSerial = 0; // Reset the timeout counter + } + } else { + if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification + timeoutFlagSerial = 1; // Timeout detected + timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value + } + // Check periodically the received Start Frame. If it is NOT OK, most probably we are out-of-sync. Try to re-sync by reseting the DMA + if (main_loop_counter % 25 == 0 && command.start != IBUS_LENGTH && command.start != 0xFF) { + HAL_UART_DMAStop(&huart); + HAL_UART_Receive_DMA(&huart, (uint8_t *)&command, sizeof(command)); + } + } + #else + if (command.start == START_FRAME && command.checksum == (uint16_t)(command.start ^ command.steer ^ command.speed)) { + if (timeoutFlagSerial) { // Check for previous timeout flag + if (timeoutCntSerial-- <= 0) // Timeout de-qualification + timeoutFlagSerial = 0; // Timeout flag cleared + } else { + cmd1 = CLAMP((int16_t)command.steer, INPUT_MIN, INPUT_MAX); + cmd2 = CLAMP((int16_t)command.speed, INPUT_MIN, INPUT_MAX); + command.start = 0xFFFF; // Change the Start Frame for timeout detection in the next cycle + timeoutCntSerial = 0; // Reset the timeout counter + } + } else { + if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification + timeoutFlagSerial = 1; // Timeout detected + timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value + } + // Check periodically the received Start Frame. If it is NOT OK, most probably we are out-of-sync. Try to re-sync by reseting the DMA + if (main_loop_counter % 25 == 0 && command.start != START_FRAME && command.start != 0xFFFF) { + HAL_UART_DMAStop(&huart); + HAL_UART_Receive_DMA(&huart, (uint8_t *)&command, sizeof(command)); } - cmd1 = CLAMP((ibus_captured_value[0] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX); - cmd2 = CLAMP((ibus_captured_value[1] - INPUT_MID) * 2, INPUT_MIN, INPUT_MAX); - #else - cmd1 = CLAMP((int16_t)command.steer, INPUT_MIN, INPUT_MAX); - cmd2 = CLAMP((int16_t)command.speed, INPUT_MIN, INPUT_MAX); - #endif - command.start = 0xFFFF; // Change the Start Frame for timeout detection in the next cycle - timeoutCntSerial = 0; // Reset the timeout counter } - } else { - if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification - timeoutFlagSerial = 1; // Timeout detected - timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value - } - // Check the received Start Frame. If it is NOT OK, most probably we are out-of-sync. - // Try to re-sync by reseting the DMA - if (command.start != START_FRAME && command.start != 0xFFFF) { - HAL_UART_DMAStop(&huart); - HAL_UART_Receive_DMA(&huart, (uint8_t *)&command, sizeof(command)); - } - } + #endif - if (timeoutFlagSerial) { // In case of timeout bring the system to a Safe State - ctrlModReq = 0; // OPEN_MODE request. This will bring the motor power to 0 in a controlled way + if (timeoutFlagSerial) { // In case of timeout bring the system to a Safe State + ctrlModReq = 0; // OPEN_MODE request. This will bring the motor power to 0 in a controlled way cmd1 = 0; cmd2 = 0; } else { - ctrlModReq = ctrlModReqRaw; // Follow the Mode request + ctrlModReq = ctrlModReqRaw; // Follow the Mode request } timeout = 0; @@ -746,9 +760,7 @@ int main(void) { board_temp_adcFilt = (int16_t)(board_temp_adcFixdt >> 20); // convert fixed-point to integer board_temp_deg_c = (TEMP_CAL_HIGH_DEG_C - TEMP_CAL_LOW_DEG_C) * (board_temp_adcFilt - TEMP_CAL_LOW_ADC) / (TEMP_CAL_HIGH_ADC - TEMP_CAL_LOW_ADC) + TEMP_CAL_LOW_DEG_C; - serialSendCnt++; // Increment the counter - if (serialSendCnt > 20) { // Send data every 100 ms = 20 * 5 ms, where 5 ms is approximately the main loop duration - serialSendCnt = 0; // Reset the counter + if (main_loop_counter % 25 == 0) { // Send data periodically // ####### DEBUG SERIAL OUT ####### #if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3) @@ -837,6 +849,9 @@ int main(void) { if (inactivity_timeout_counter > (INACTIVITY_TIMEOUT * 60 * 1000) / (DELAY_IN_MAIN_LOOP + 1)) { // rest of main loop needs maybe 1ms poweroff(); } + + main_loop_counter++; + timeout++; } }