add state machine for modes

This commit is contained in:
interfisch 2019-12-11 21:22:54 +01:00
parent 53ee2f4d22
commit 05c42ccbc5
2 changed files with 448 additions and 176 deletions

View File

@ -1,27 +1,3 @@
// *******************************************************************
// Arduino Nano 3.3V example code
// for https://github.com/EmanuelFeru/hoverboard-firmware-hack-FOC
//
// Copyright (C) 2019-2020 Emanuel FERU <aerdronix@gmail.com>
//
// *******************************************************************
// INFO:
// • This sketch uses the the Serial Software interface to communicate and send commands to the hoverboard
// • The built-in (HW) Serial interface is used for debugging and visualization. In case the debugging is not needed,
// it is recommended to use the built-in Serial interface for full speed perfomace.
// • The data packaging includes a Start Frame, checksum, and re-syncronization capability for reliable communication
//
// CONFIGURATION on the hoverboard side in config.h:
// • Option 1: Serial on Left Sensor cable (long wired cable)
// #define CONTROL_SERIAL_USART2
// #define FEEDBACK_SERIAL_USART2
// // #define DEBUG_SERIAL_USART2
// • Option 2: Serial on Right Sensor cable (short wired cable) - recommended, so the ADCs on the other cable are still available
// #define CONTROL_SERIAL_USART3
// #define FEEDBACK_SERIAL_USART3
// // #define DEBUG_SERIAL_USART3
// *******************************************************************
//https://github.com/rogerclarkmelbourne/Arduino_STM32 in arduino/hardware //https://github.com/rogerclarkmelbourne/Arduino_STM32 in arduino/hardware
//Board: Generic STM32F103C series //Board: Generic STM32F103C series
//Upload method: serial //Upload method: serial
@ -41,12 +17,13 @@
//#define DEBUG_RX // [-] Debug received data. Prints all bytes to serial (comment-out to disable) //#define DEBUG_RX // [-] Debug received data. Prints all bytes to serial (comment-out to disable)
//#define MAXADCVALUE 4095 //#define MAXADCVALUE 4095
#define ADC_CALIB_THROTTLE_MIN 2000 #define ADC_CALIB_THROTTLE_LOWEST 1900 //a bit above maximum adc value if throttle it not touched
#define ADC_CALIB_THROTTLE_MAX 3120 #define ADC_CALIB_THROTTLE_MIN 2000 //minimum adc value that should correspond to 0 speed
#define ADC_CALIB_THROTTLE_MAX 3120 //maximum adc value that should correspond to full speed
#define PIN_POWERLED PA0 //Red LED inside Engine Start Button. Powered with 5V via transistor #define PIN_STARTLED PA0 //Red LED inside Engine Start Button. Powered with 5V via transistor
#define PIN_POWERBUTTON PB8 //"Enginge Start" Button. connected To NC (=LOW). HIGH when pressed #define PIN_STARTBUTTON PB8 //"Enginge Start" Button. connected To NC (=LOW). HIGH when pressed
#define POWERBUTTON_DOWN digitalRead(PIN_POWERBUTTON) #define STARTBUTTON_DOWN digitalRead(PIN_STARTBUTTON)
#define SENDPERIOD 50 //ms. delay for sending speed and steer data to motor controller via serial #define SENDPERIOD 50 //ms. delay for sending speed and steer data to motor controller via serial
#define PIN_THROTTLE PA4 #define PIN_THROTTLE PA4
@ -62,7 +39,36 @@
#define PIN_RELAISFRONT PB14 //connected to relais which presses the powerbutton of the hoverboard for the front wheels #define PIN_RELAISFRONT PB14 //connected to relais which presses the powerbutton of the hoverboard for the front wheels
#define PIN_RELAISREAR PB15 //connected to relais which presses the powerbutton of the hoverboard for the rear wheels #define PIN_RELAISREAR PB15 //connected to relais which presses the powerbutton of the hoverboard for the rear wheels
int testcounter=0; #define DEBOUNCETIME 20 //time to not check for inputs after key press
#define BUTTONTIMEHOLD 750 //time for button hold
long millis_lastinput=0; //for button debounce
long timebuttonpressed_start;
boolean button_start=false;
boolean button_hold_start=false;
#define TIME_AUTOPOWEROFF 600000 //600000 = 10 minutes
long loopmillis=0; //only use one millis reading each loop
long millis_lastchange=0; //for poweroff after some time with no movement
String errormessage=""; //store some error message to print
//Mode change variables
uint8_t state_modechange=0;
long state_modechange_time=0;
long millis_lastadc=0;
#define ADC_READTIME 10 //time interval to read adc (for filtering)
#define ADC_THROTTLE_FILTER 0.05 //low value = slower change
int adc_throttle_raw=0; //raw throttle value from adc
float adc_throttle=0; //filtered value
uint16_t out_speedFL=0;
uint16_t out_speedFR=0;
uint16_t out_speedRL=0;
uint16_t out_speedRR=0;
long last_send = 0; long last_send = 0;
@ -73,6 +79,7 @@ uint16_t bufStartFrame1; // Buffer Start Frame
byte *p1; // Pointer declaration for the new received data byte *p1; // Pointer declaration for the new received data
byte incomingByte1; byte incomingByte1;
byte incomingBytePrev1; byte incomingBytePrev1;
long lastValidDataSerial1_time;
//Same for Serial2 //Same for Serial2
uint8_t idx2 = 0; // Index for new data pointer uint8_t idx2 = 0; // Index for new data pointer
@ -80,6 +87,7 @@ uint16_t bufStartFrame2; // Buffer Start Frame
byte *p2; // Pointer declaration for the new received data byte *p2; // Pointer declaration for the new received data
byte incomingByte2; byte incomingByte2;
byte incomingBytePrev2; byte incomingBytePrev2;
long lastValidDataSerial2_time;
typedef struct{ typedef struct{
@ -108,21 +116,31 @@ SerialFeedback NewFeedback1;
SerialFeedback Feedback2; SerialFeedback Feedback2;
SerialFeedback NewFeedback2; SerialFeedback NewFeedback2;
enum mode{idle, on, error, off};
/*
* idle: controller is on, hoverboards are off
* on: hoverbaords are on and happy
* error: some error occured, stop everything and show errors
* off: shutdown triggered. will power down latch soon
*/
mode currentmode; //current active mode
mode requestmode; //change this variable to initiate a mode change
// ########################## SETUP ########################## // ########################## SETUP ##########################
void setup() void setup()
{ {
Serial.begin(115200); //Debug and Program. A9=TX1, A10=RX1 (3v3 level) Serial.begin(115200); //Debug and Program. A9=TX1, A10=RX1 (3v3 level)
Serial1.begin(38400); //control. A2=TX2, A3=RX2 (Serial1 is Usart 2). Marked with "1" on connector Serial1.begin(SERIAL_CONTROL_BAUD); //control. A2=TX2, A3=RX2 (Serial1 is Usart 2). Marked with "1" on connector
Serial2.begin(38400); //control. B10=TX3, B11=RX3 (Serial2 is Usart 3). Marked with "II" on connector Serial2.begin(SERIAL_CONTROL_BAUD); //control. B10=TX3, B11=RX3 (Serial2 is Usart 3). Marked with "II" on connector
// Pin Setup
Serial1.begin(SERIAL_CONTROL_BAUD); pinMode(PIN_STARTLED, OUTPUT);
pinMode(PIN_POWERLED, OUTPUT);
pinMode(PIN_ENABLE, OUTPUT); pinMode(PIN_ENABLE, OUTPUT);
digitalWrite(PIN_ENABLE, HIGH); //keep power on digitalWrite(PIN_ENABLE, HIGH); //keep power on
pinMode(PIN_POWERBUTTON, INPUT_PULLUP); pinMode(PIN_STARTBUTTON, INPUT_PULLUP);
pinMode(PIN_MODESWITCH, INPUT_PULLUP); pinMode(PIN_MODESWITCH, INPUT_PULLUP);
pinMode(PIN_MODELED_GREEN, OUTPUT); pinMode(PIN_MODELED_GREEN, OUTPUT);
pinMode(PIN_MODELED_RED, OUTPUT); pinMode(PIN_MODELED_RED, OUTPUT);
@ -132,150 +150,275 @@ void setup()
pinMode(PIN_BRAKE, INPUT); pinMode(PIN_BRAKE, INPUT);
Serial.println("Initialized"); Serial.println("Initialized");
currentmode = idle; //start in idle mode
requestmode = currentmode;
millis_lastchange=millis();
} }
// ########################## SEND ##########################
void SendSerial1(int16_t uSpeedLeft, int16_t uSpeedRight)
{
// Create command
Command1.start = (uint16_t)START_FRAME;
Command1.speedLeft = (int16_t)uSpeedLeft;
Command1.speedRight = (int16_t)uSpeedRight;
Command1.checksum = (uint16_t)(Command1.start ^ Command1.speedLeft ^ Command1.speedRight);
Serial1.write((uint8_t *) &Command1, sizeof(Command1));
}
void SendSerial2(int16_t uSpeedLeft, int16_t uSpeedRight)
{
// Create command
Command2.start = (uint16_t)START_FRAME;
Command2.speedLeft = (int16_t)uSpeedLeft;
Command2.speedRight = (int16_t)uSpeedRight;
Command2.checksum = (uint16_t)(Command2.start ^ Command2.speedLeft ^ Command2.speedRight);
Serial2.write((uint8_t *) &Command2, sizeof(Command2));
}
// ########################## RECEIVE ##########################
void ReceiveSerial1()
{
// Check for new data availability in the Serial buffer
if ( Serial1.available() ) {
incomingByte1 = Serial1.read(); // Read the incoming byte
bufStartFrame1 = ((uint16_t)(incomingBytePrev1) << 8) + incomingByte1; // Construct the start frame
}
else {
return;
}
// If DEBUG_RX is defined print all incoming bytes
#ifdef DEBUG_RX
Serial.print(incomingByte1);
return;
#endif
// Copy received data
if (bufStartFrame1 == START_FRAME) { // Initialize if new data is detected
p1 = (byte *)&NewFeedback1;
*p1++ = incomingBytePrev1;
*p1++ = incomingByte1;
idx1 = 2;
} else if (idx1 >= 2 && idx1 < sizeof(SerialFeedback)) { // Save the new received data
*p1++ = incomingByte1;
idx1++;
}
// Check if we reached the end of the package
if (idx1 == sizeof(SerialFeedback)) {
uint16_t checksum;
checksum = (uint16_t)(NewFeedback1.start ^ NewFeedback1.cmd1 ^ NewFeedback1.cmd2 ^ NewFeedback1.speedR ^ NewFeedback1.speedL
^ NewFeedback1.speedR_meas ^ NewFeedback1.speedL_meas ^ NewFeedback1.batVoltage ^ NewFeedback1.boardTemp);
// Check validity of the new data
if (NewFeedback1.start == START_FRAME && checksum == NewFeedback1.checksum) {
// Copy the new data
memcpy(&Feedback1, &NewFeedback1, sizeof(SerialFeedback));
}
idx1 = 0; // Reset the index (it prevents to enter in this if condition in the next cycle)
/*
// Print data to built-in Serial
Serial.print("1: "); Serial.print(Feedback.cmd1);
Serial.print(" 2: "); Serial.print(Feedback.cmd2);
Serial.print(" 3: "); Serial.print(Feedback.speedR);
Serial.print(" 4: "); Serial.print(Feedback.speedL);
Serial.print(" 5: "); Serial.print(Feedback.speedR_meas);
Serial.print(" 6: "); Serial.print(Feedback.speedL_meas);
Serial.print(" 7: "); Serial.print(Feedback.batVoltage);
Serial.print(" 8: "); Serial.println(Feedback.boardTemp);
} else {
Serial.println("Non-valid data skipped");
}*/
}
// Update previous states
incomingBytePrev1 = incomingByte1;
}
void ReceiveSerial2()
{
// Check for new data availability in the Serial buffer
if ( Serial2.available() ) {
incomingByte2 = Serial2.read(); // Read the incoming byte
bufStartFrame2 = ((uint16_t)(incomingBytePrev2) << 8) + incomingByte2; // Construct the start frame
}
else {
return;
}
// If DEBUG_RX is defined print all incoming bytes
#ifdef DEBUG_RX
Serial.print(incomingByte2);
return;
#endif
// Copy received data
if (bufStartFrame2 == START_FRAME) { // Initialize if new data is detected
p2 = (byte *)&NewFeedback2;
*p2++ = incomingBytePrev2;
*p2++ = incomingByte2;
idx2 = 2;
} else if (idx2 >= 2 && idx2 < sizeof(SerialFeedback)) { // Save the new received data
*p2++ = incomingByte2;
idx2++;
}
// Check if we reached the end of the package
if (idx2 == sizeof(SerialFeedback)) {
uint16_t checksum;
checksum = (uint16_t)(NewFeedback2.start ^ NewFeedback2.cmd1 ^ NewFeedback2.cmd2 ^ NewFeedback2.speedR ^ NewFeedback2.speedL
^ NewFeedback2.speedR_meas ^ NewFeedback2.speedL_meas ^ NewFeedback2.batVoltage ^ NewFeedback2.boardTemp);
// Check validity of the new data
if (NewFeedback2.start == START_FRAME && checksum == NewFeedback2.checksum) {
// Copy the new data
memcpy(&Feedback2, &NewFeedback2, sizeof(SerialFeedback));
}
idx2 = 0; // Reset the index (it prevents to enter in this if condition in the next cycle)
}
// Update previous states
incomingBytePrev2 = incomingByte2;
}
// ########################## LOOP ########################## // ########################## LOOP ##########################
void loop() { void loop() {
loopmillis=millis(); //read millis for this cycle
ReceiveSerial1(); // Check for new received data
ReceiveSerial2(); // Check for new received data
handleInputs();
handleModeChange(); //mode changes
modeloops();
if (loopmillis - last_send > SENDPERIOD) {
last_send=loopmillis;
if (currentmode!=off || currentmode!=idle) { //if boards should be powered on
SendSerial2(out_speedFL,out_speedFR); //Front
SendSerial1(out_speedRL,out_speedRR); //Rear
}
}
}
void handleInputs()
{
//Short press (true when button short pressed, on release)
button_start=false;
//long press (true when button is held down for BUTTONTIMEHOLD, on time elapsed)
button_hold_start=false;
if (loopmillis-millis_lastinput>DEBOUNCETIME) //Button debouncing
{
//Trigger
if (timebuttonpressed_start == 0 && STARTBUTTON_DOWN){ //first time pressed down. (low when pressed)
timebuttonpressed_start=loopmillis; //set time of button press
}else if(timebuttonpressed_start != 0 && !STARTBUTTON_DOWN){ //button released (was pressed)
if (loopmillis-timebuttonpressed_start < BUTTONTIMEHOLD){ //short press
button_start=true;
}
timebuttonpressed_start=0; //re-enable after short press and release from hold
}else if(loopmillis-timebuttonpressed_start >= BUTTONTIMEHOLD && timebuttonpressed_start>0){ //held down long enough and not already hold triggered
button_hold_start=true;
timebuttonpressed_start=-1; //-1 as flag for hold triggered
}
}
if ( button_start || button_hold_start) {
millis_lastchange=loopmillis; //for auto poweroff
millis_lastinput=loopmillis; //for debouncing
}
if (loopmillis-millis_lastadc>ADC_READTIME) {
adc_throttle_raw = analogRead(PIN_THROTTLE);
adc_throttle = adc_throttle*(1-ADC_THROTTLE_FILTER) + adc_throttle_raw*ADC_THROTTLE_FILTER;
if (adc_throttle_raw >= ADC_CALIB_THROTTLE_MIN) { //throttle pressed
millis_lastchange=loopmillis;
}
millis_lastadc=loopmillis;
}
if (loopmillis-millis_lastchange>TIME_AUTOPOWEROFF){
requestmode = off;
}
}
void handleModeChange() {
if (button_start){ //short press start button
requestmode=off; //short press in any mode turns off everything
}
if (currentmode==requestmode) { //## Not currently changing modes ##
switch (currentmode) { //mode dependant
case idle:
if (button_hold_start){ //long press
requestmode=on; //long press switches betweeen idle and on
state_modechange=0; //start at state 0
}
if (button_start) { //short press
requestmode=off;
state_modechange=0;
}
break;
case on:
if (button_hold_start){ //long press
requestmode=idle; //long press switches betweeen idle and on
state_modechange=0; //start at state 0
}
if (button_start) { //short press
requestmode=off;
state_modechange=0;
}
break;
case error:
if (button_start) { //short press
requestmode=off;
state_modechange=0;
}
break;
case off:
break;
default:
currentmode=error; //something else? -> error
}
}else{ // ## Change requested ##
switch (requestmode) { //mode changes
case idle: case on: case off: //similar for on, idle and off
switch(state_modechange) {
case 0:
if (requestmode==on && adc_throttle > ADC_CALIB_THROTTLE_LOWEST) { //requested to turn on but throttle is pressed
state_modechange=0;
requestmode=currentmode; //abort modechange
//TODO: led show aborted modechange
}else{ //everythings fine, turn on/off
digitalWrite(PIN_RELAISFRONT,HIGH); //simulate hoverboard power button press
state_modechange++;
state_modechange_time=loopmillis; //set to current time
}
break;
case 1:
if (loopmillis - state_modechange_time > 200) { //wait some time
digitalWrite(PIN_RELAISFRONT,LOW); //release simulated button
state_modechange++;
state_modechange_time=loopmillis; //set to current time
}
break;
case 2:
if (loopmillis - state_modechange_time > 200) { //wait some time
digitalWrite(PIN_RELAISREAR,HIGH); //simulate hoverboard power button press
state_modechange++;
state_modechange_time=loopmillis; //set to current time
}
break;
case 3:
if (loopmillis - state_modechange_time > 200) { //wait some time
digitalWrite(PIN_RELAISREAR,LOW); //release simulated button
state_modechange++;
state_modechange_time=loopmillis; //set to current time
}
break;
case 4:
// ### Request On ###
if (requestmode==on) {//wait for both boards to send feedback
if ( serial1Active() && serial2Active() ) { //got recent feedback from both boards
state_modechange++;
}
if (loopmillis - state_modechange_time > 5000) { //timeout
currentmode=error; //error
requestmode=currentmode;
errormessage="No feedback from board(s) on startup";
state_modechange=0;
}
// ### Request Idle or Off (both power boards off) ###
}else if(requestmode==idle || requestmode==off) { //wait for no response
if ( !serial1Active() && !serial2Active() ) { //no new data since some time
state_modechange++;
}
if (loopmillis - state_modechange_time > 5000) { //timeout
currentmode=error; //error
requestmode=currentmode;
errormessage="Boards did not turn off";
state_modechange=0;
}
}else{ //if changed off from error mode
state_modechange++;
}
break;
default: //finished modechange
currentmode=requestmode;
state_modechange=0;
break;
}
break;
case error:
currentmode=error; //stay in this mode
break;
default:
currentmode=error;
}
}
}
boolean serial1Active() {
return loopmillis-lastValidDataSerial1_time < 2000;
}
boolean serial2Active() {
return loopmillis-lastValidDataSerial2_time < 2000;
}
void modeloops() {
switch (requestmode) { //mode changes
case idle:
loop_idle();
break;
case on:
loop_on();
break;
case error:
loop_error();
break;
case off:
loop_off();
break;
}
}
void loop_idle() {
out_speedFL=out_speedFR=out_speedRR=out_speedRL=0; //stop motors
}
void loop_on() {
int16_t speedvalue=constrain( map(adc_throttle, ADC_CALIB_THROTTLE_MIN, ADC_CALIB_THROTTLE_MAX, 0, 1000 ) ,0, 1000);
out_speedFL=speedvalue;
out_speedFR=speedvalue;
out_speedRL=speedvalue;
out_speedRR=speedvalue;
}
void loop_error() {
out_speedFL=out_speedFR=out_speedRR=out_speedRL=0; //stop motors
//TODO: blink error led
}
void loop_off() {
//loop enters when boards are sucessfully turned off
//TODO: led show
digitalWrite(PIN_ENABLE, LOW); //cut own power
}
/*
// Old loop
void loopold() {
//selfTest(); //start selftest, does not return //selfTest(); //start selftest, does not return
ReceiveSerial1(); // Check for new received data ReceiveSerial1(); // Check for new received data
if (millis()>2000 && POWERBUTTON_DOWN) { if (millis()>2000 && STARTBUTTON_DOWN) {
poweronBoards(); poweronBoards();
} }
if (millis() - last_send > SENDPERIOD) { if (millis() - last_send > SENDPERIOD) {
//Serial.print("powerbutton="); Serial.print(POWERBUTTON_DOWN); Serial.print(" modeswitch down="); Serial.println(MODESWITCH_DOWN); //Serial.print("powerbutton="); Serial.print(STARTBUTTON_DOWN); Serial.print(" modeswitch down="); Serial.println(MODESWITCH_DOWN);
int _read=analogRead(PIN_THROTTLE); int _read=analogRead(PIN_THROTTLE);
@ -296,7 +439,7 @@ void loop() {
last_send = millis(); last_send = millis();
digitalWrite(PIN_POWERLED, !digitalRead(PIN_POWERLED)); digitalWrite(PIN_STARTLED, !digitalRead(PIN_STARTLED));
if (testcounter%3==0) { if (testcounter%3==0) {
digitalWrite(PIN_MODELED_GREEN, !digitalRead(PIN_MODELED_GREEN)); digitalWrite(PIN_MODELED_GREEN, !digitalRead(PIN_MODELED_GREEN));
} }
@ -336,7 +479,7 @@ void loop() {
Serial.print(", "); Serial.println(Feedback2.boardTemp); Serial.print(", "); Serial.println(Feedback2.boardTemp);
} }
if (millis()>30000 && POWERBUTTON_DOWN) { if (millis()>30000 && STARTBUTTON_DOWN) {
poweroff(); poweroff();
} }
@ -370,7 +513,7 @@ void poweronBoards() {
} }
*/
void selfTest() { void selfTest() {
@ -379,8 +522,8 @@ void selfTest() {
#define TESTDELAY 1000 //delay between test #define TESTDELAY 1000 //delay between test
#define TESTTIME 500 //time to keep tested pin on #define TESTTIME 500 //time to keep tested pin on
delay(TESTDELAY); Serial.println("PIN_POWERLED"); delay(TESTDELAY); Serial.println("PIN_STARTLED");
digitalWrite(PIN_POWERLED,HIGH); delay(TESTTIME); digitalWrite(PIN_POWERLED,LOW); digitalWrite(PIN_STARTLED,HIGH); delay(TESTTIME); digitalWrite(PIN_STARTLED,LOW);
delay(TESTDELAY); Serial.println("PIN_MODELED_GREEN"); delay(TESTDELAY); Serial.println("PIN_MODELED_GREEN");
digitalWrite(PIN_MODELED_GREEN,LOW); delay(TESTTIME); digitalWrite(PIN_MODELED_GREEN,HIGH); digitalWrite(PIN_MODELED_GREEN,LOW); delay(TESTTIME); digitalWrite(PIN_MODELED_GREEN,HIGH);
@ -395,13 +538,13 @@ void selfTest() {
digitalWrite(PIN_RELAISREAR,HIGH); delay(TESTTIME); digitalWrite(PIN_RELAISREAR,LOW); digitalWrite(PIN_RELAISREAR,HIGH); delay(TESTTIME); digitalWrite(PIN_RELAISREAR,LOW);
delay(TESTDELAY); Serial.println("ALL ON"); delay(TESTDELAY); Serial.println("ALL ON");
digitalWrite(PIN_POWERLED,HIGH); digitalWrite(PIN_STARTLED,HIGH);
digitalWrite(PIN_MODELED_GREEN,LOW); digitalWrite(PIN_MODELED_GREEN,LOW);
digitalWrite(PIN_MODELED_RED,LOW); digitalWrite(PIN_MODELED_RED,LOW);
digitalWrite(PIN_RELAISFRONT,HIGH); digitalWrite(PIN_RELAISFRONT,HIGH);
digitalWrite(PIN_RELAISREAR,HIGH); digitalWrite(PIN_RELAISREAR,HIGH);
delay(TESTTIME*5); delay(TESTTIME*5);
digitalWrite(PIN_POWERLED,LOW); digitalWrite(PIN_STARTLED,LOW);
digitalWrite(PIN_MODELED_GREEN,HIGH); digitalWrite(PIN_MODELED_GREEN,HIGH);
digitalWrite(PIN_MODELED_RED,HIGH); digitalWrite(PIN_MODELED_RED,HIGH);
digitalWrite(PIN_RELAISFRONT,LOW); digitalWrite(PIN_RELAISFRONT,LOW);
@ -413,7 +556,7 @@ void selfTest() {
while(true) { //Keep printing input values forever while(true) { //Keep printing input values forever
delay(100); delay(100);
Serial.print("millis="); Serial.print(millis()); Serial.print(", throttle ADC="); Serial.println(analogRead(PIN_THROTTLE)); Serial.print("millis="); Serial.print(millis()); Serial.print(", throttle ADC="); Serial.println(analogRead(PIN_THROTTLE));
Serial.print("powerbutton down="); Serial.print(POWERBUTTON_DOWN); Serial.print(" modeswitch down="); Serial.println(MODESWITCH_DOWN); Serial.print("powerbutton down="); Serial.print(STARTBUTTON_DOWN); Serial.print(" modeswitch down="); Serial.println(MODESWITCH_DOWN);
while (millis()>=60000) { while (millis()>=60000) {
digitalWrite(PIN_ENABLE, LOW); //poweroff own latch digitalWrite(PIN_ENABLE, LOW); //poweroff own latch

View File

@ -0,0 +1,129 @@
// ########################## SEND ##########################
void SendSerial1(int16_t uSpeedLeft, int16_t uSpeedRight)
{
// Create command
Command1.start = (uint16_t)START_FRAME;
Command1.speedLeft = (int16_t)uSpeedLeft;
Command1.speedRight = (int16_t)uSpeedRight;
Command1.checksum = (uint16_t)(Command1.start ^ Command1.speedLeft ^ Command1.speedRight);
Serial1.write((uint8_t *) &Command1, sizeof(Command1));
}
void SendSerial2(int16_t uSpeedLeft, int16_t uSpeedRight)
{
// Create command
Command2.start = (uint16_t)START_FRAME;
Command2.speedLeft = (int16_t)uSpeedLeft;
Command2.speedRight = (int16_t)uSpeedRight;
Command2.checksum = (uint16_t)(Command2.start ^ Command2.speedLeft ^ Command2.speedRight);
Serial2.write((uint8_t *) &Command2, sizeof(Command2));
}
// ########################## RECEIVE ##########################
void ReceiveSerial1()
{
// Check for new data availability in the Serial buffer
if ( Serial1.available() ) {
incomingByte1 = Serial1.read(); // Read the incoming byte
bufStartFrame1 = ((uint16_t)(incomingBytePrev1) << 8) + incomingByte1; // Construct the start frame
}
else {
return;
}
// If DEBUG_RX is defined print all incoming bytes
#ifdef DEBUG_RX
Serial.print(incomingByte1);
return;
#endif
// Copy received data
if (bufStartFrame1 == START_FRAME) { // Initialize if new data is detected
p1 = (byte *)&NewFeedback1;
*p1++ = incomingBytePrev1;
*p1++ = incomingByte1;
idx1 = 2;
} else if (idx1 >= 2 && idx1 < sizeof(SerialFeedback)) { // Save the new received data
*p1++ = incomingByte1;
idx1++;
}
// Check if we reached the end of the package
if (idx1 == sizeof(SerialFeedback)) {
uint16_t checksum;
checksum = (uint16_t)(NewFeedback1.start ^ NewFeedback1.cmd1 ^ NewFeedback1.cmd2 ^ NewFeedback1.speedR ^ NewFeedback1.speedL
^ NewFeedback1.speedR_meas ^ NewFeedback1.speedL_meas ^ NewFeedback1.batVoltage ^ NewFeedback1.boardTemp);
// Check validity of the new data
if (NewFeedback1.start == START_FRAME && checksum == NewFeedback1.checksum) {
// Copy the new data
memcpy(&Feedback1, &NewFeedback1, sizeof(SerialFeedback));
lastValidDataSerial1_time = millis();
}
idx1 = 0; // Reset the index (it prevents to enter in this if condition in the next cycle)
/*
// Print data to built-in Serial
Serial.print("1: "); Serial.print(Feedback.cmd1);
Serial.print(" 2: "); Serial.print(Feedback.cmd2);
Serial.print(" 3: "); Serial.print(Feedback.speedR);
Serial.print(" 4: "); Serial.print(Feedback.speedL);
Serial.print(" 5: "); Serial.print(Feedback.speedR_meas);
Serial.print(" 6: "); Serial.print(Feedback.speedL_meas);
Serial.print(" 7: "); Serial.print(Feedback.batVoltage);
Serial.print(" 8: "); Serial.println(Feedback.boardTemp);
} else {
Serial.println("Non-valid data skipped");
}*/
}
// Update previous states
incomingBytePrev1 = incomingByte1;
}
void ReceiveSerial2()
{
// Check for new data availability in the Serial buffer
if ( Serial2.available() ) {
incomingByte2 = Serial2.read(); // Read the incoming byte
bufStartFrame2 = ((uint16_t)(incomingBytePrev2) << 8) + incomingByte2; // Construct the start frame
}
else {
return;
}
// If DEBUG_RX is defined print all incoming bytes
#ifdef DEBUG_RX
Serial.print(incomingByte2);
return;
#endif
// Copy received data
if (bufStartFrame2 == START_FRAME) { // Initialize if new data is detected
p2 = (byte *)&NewFeedback2;
*p2++ = incomingBytePrev2;
*p2++ = incomingByte2;
idx2 = 2;
} else if (idx2 >= 2 && idx2 < sizeof(SerialFeedback)) { // Save the new received data
*p2++ = incomingByte2;
idx2++;
}
// Check if we reached the end of the package
if (idx2 == sizeof(SerialFeedback)) {
uint16_t checksum;
checksum = (uint16_t)(NewFeedback2.start ^ NewFeedback2.cmd1 ^ NewFeedback2.cmd2 ^ NewFeedback2.speedR ^ NewFeedback2.speedL
^ NewFeedback2.speedR_meas ^ NewFeedback2.speedL_meas ^ NewFeedback2.batVoltage ^ NewFeedback2.boardTemp);
// Check validity of the new data
if (NewFeedback2.start == START_FRAME && checksum == NewFeedback2.checksum) {
// Copy the new data
memcpy(&Feedback2, &NewFeedback2, sizeof(SerialFeedback));
lastValidDataSerial2_time = millis();
}
idx2 = 0; // Reset the index (it prevents to enter in this if condition in the next cycle)
}
// Update previous states
incomingBytePrev2 = incomingByte2;
}