2021-02-26 18:37:12 +00:00
# include <Arduino.h>
2023-05-19 14:45:56 +00:00
2023-03-02 20:18:48 +00:00
# include "definitions.h"
2023-04-15 22:13:02 +00:00
//#include "structs.h"
2023-05-23 19:48:40 +00:00
2023-03-02 20:18:48 +00:00
# include <TimeLib.h> //for teensy rtc
2023-05-23 19:48:40 +00:00
# include "helpfunctions.h"
2023-04-15 22:13:02 +00:00
# include "hoverboard-esc-serial-comm.h"
2023-05-23 19:48:40 +00:00
# include "led.h"
2023-04-15 22:13:02 +00:00
//#include "comms.h"
2023-03-02 21:05:48 +00:00
# include "display.h"
2023-04-15 22:13:02 +00:00
# include "logging.h"
2023-02-28 23:31:46 +00:00
# include "ADS1X15.h"
2023-04-15 22:13:02 +00:00
2023-05-19 14:45:56 +00:00
2023-04-15 22:13:02 +00:00
ESCSerialComm escFront ( Serial2 ) ;
ESCSerialComm escRear ( Serial3 ) ;
//Serial1 = TX1=1, RX1=0
//Serial2 = TX2=10, RX2=9
//Serial3 = TX3=8, RX3=7
2023-02-28 23:31:46 +00:00
ADS1115 ADS ( 0x48 ) ;
2021-10-04 16:41:16 +00:00
2021-03-09 23:59:54 +00:00
/*
Connections :
Tennsy Pin , Pin Name , Connected to
10 , Tx2 , Hoverboard RX ( Green )
9 , Rx2 , Hoverboard TX ( Blue )
8 , Tx3 , Hoverboard RX ( Green )
7 , Rx3 , Hoverboard TX ( Blue )
*/
2021-03-31 19:16:48 +00:00
2021-03-02 22:48:20 +00:00
2023-02-28 23:31:46 +00:00
void readADS ( ) ;
2021-03-31 19:16:48 +00:00
void readADC ( ) ;
void failChecks ( ) ;
2023-04-15 22:13:02 +00:00
//void sendCMD();
void calculateSetSpeed ( ) ;
2021-03-31 19:16:48 +00:00
void checkLog ( ) ;
2023-03-02 20:18:48 +00:00
2021-03-31 19:58:23 +00:00
void leds ( ) ;
2021-03-20 20:20:17 +00:00
2021-05-15 16:56:42 +00:00
void readButtons ( ) ;
2021-08-06 14:20:48 +00:00
uint16_t linearizeThrottle ( uint16_t v ) ;
2021-02-26 18:37:12 +00:00
2023-03-02 20:18:48 +00:00
time_t getTeensy3Time ( ) ;
2021-03-02 22:48:20 +00:00
2021-02-26 18:37:12 +00:00
// ########################## SETUP ##########################
void setup ( )
{
2021-03-20 20:20:17 +00:00
Serial . begin ( SERIAL_BAUD ) ; //Debug and Program
2021-02-26 18:37:12 +00:00
2021-03-20 20:20:17 +00:00
Serial1 . begin ( SERIAL_LOG_BAUD ) ; //TX1=1, RX1=0
2023-04-15 22:13:02 +00:00
//Serial2.begin(SERIAL_CONTROL_BAUD); //control, TX2=10, RX2=9
//Serial3.begin(SERIAL_CONTROL_BAUD); //control, TX3=8, RX3=7
2021-02-26 18:37:12 +00:00
2021-03-20 15:13:16 +00:00
pinMode ( PIN_THROTTLE , INPUT ) ;
pinMode ( PIN_BRAKE , INPUT ) ;
2021-05-15 16:56:42 +00:00
pinMode ( PIN_START , INPUT_PULLUP ) ; //Pressed=High
2021-03-20 15:13:16 +00:00
2021-03-25 17:37:33 +00:00
pinMode ( PIN_LED_START , OUTPUT ) ; //Active High
2021-03-31 19:58:23 +00:00
2023-04-15 22:13:02 +00:00
//TODO: remove mode button things
2021-03-25 17:37:33 +00:00
pinMode ( PIN_MODE_LEDG , OUTPUT ) ; //Active Low
2021-03-20 16:56:44 +00:00
digitalWrite ( PIN_MODE_LEDG , LOW ) ;
2021-03-25 17:37:33 +00:00
pinMode ( PIN_MODE_LEDR , OUTPUT ) ; //Active Low
2021-03-20 16:56:44 +00:00
digitalWrite ( PIN_MODE_LEDR , LOW ) ;
2021-02-26 18:37:12 +00:00
2021-03-20 15:13:16 +00:00
pinMode ( PIN_LATCH_ENABLE , OUTPUT ) ;
digitalWrite ( PIN_LATCH_ENABLE , HIGH ) ; //latch on
2023-05-19 14:45:56 +00:00
init_led ( ) ;
2023-05-23 19:46:34 +00:00
led_testLEDSBlocking ( ) ;
2023-03-02 21:05:48 +00:00
2023-04-15 22:13:02 +00:00
delay ( 2000 ) ;
Serial . println ( " Init Functions " ) ;
2023-05-23 19:46:34 +00:00
led_simpeProgress ( 0 , 1 ) ;
2023-05-19 14:45:56 +00:00
2023-05-23 19:46:34 +00:00
bool initResult = false ;
initResult = display_init ( ) ;
led_simpeProgress ( 1 , initResult ) ;
2023-03-02 21:05:48 +00:00
2021-02-26 18:37:12 +00:00
2023-05-23 19:46:34 +00:00
initResult = initLogging ( ) ;
led_simpeProgress ( 2 , initResult ) ;
2023-04-15 22:13:02 +00:00
escFront . init ( ) ;
2023-05-23 19:46:34 +00:00
led_simpeProgress ( 3 , true ) ;
2023-04-15 22:13:02 +00:00
escRear . init ( ) ;
2023-05-23 19:46:34 +00:00
led_simpeProgress ( 4 , true ) ;
2023-04-15 22:13:02 +00:00
2023-02-28 23:31:46 +00:00
delay ( 2000 ) ;
Serial . println ( " Wait finished. Booting.. " ) ;
2023-05-23 19:46:34 +00:00
led_simpeProgress ( 5 , true ) ;
2023-02-28 23:31:46 +00:00
//init ADS1115
if ( ! ADS . begin ( ) ) {
Serial . println ( " Error: " ) ; delay ( 2000 ) ; Serial . println ( " ADS1115 Init Error! " ) ;
2023-05-23 19:46:34 +00:00
led_simpeProgress ( 6 , false ) ;
2023-04-15 22:13:02 +00:00
writeLogComment ( ( unsigned long ) millis ( ) , " Error ADS1115 Init " ) ;
2023-05-23 19:46:34 +00:00
} else {
ADS . setGain ( 0 ) ;
ADS . setDataRate ( 7 ) ; // Read Interval: 7-> 2ms, 6-> 3-4ms , 5-> 5-6ms, 4-> 9ms, 0-> 124ms
// also set ADSREADPERIOD to at least the read interval
ADS . requestADC ( 0 ) ; //Start requesting a channel
led_simpeProgress ( 6 , true ) ;
2023-02-28 23:31:46 +00:00
}
delay ( 10 ) ;
2023-05-23 19:46:34 +00:00
2023-02-28 23:31:46 +00:00
2021-10-04 16:41:16 +00:00
setSyncProvider ( getTeensy3Time ) ; //See https://www.pjrc.com/teensy/td_libs_Time.html#teensy3
if ( timeStatus ( ) ! = timeSet ) {
Serial . println ( " Unable to sync with the RTC " ) ;
2023-05-23 19:46:34 +00:00
led_simpeProgress ( 7 , false ) ;
2021-10-04 16:41:16 +00:00
} else {
Serial . println ( " RTC has set the system time " ) ;
2023-05-23 19:46:34 +00:00
led_simpeProgress ( 7 , true ) ;
2021-10-04 16:41:16 +00:00
}
2023-05-23 19:46:34 +00:00
2021-10-04 16:41:16 +00:00
2023-04-15 22:13:02 +00:00
writeLogComment ( millis ( ) , " Setup Finished " ) ;
2023-05-23 19:46:34 +00:00
led_simpeProgress ( 15 , true ) ;
2021-10-04 16:41:16 +00:00
2023-05-23 19:46:34 +00:00
led_simpleProgressWait ( ) ; //wait longer if any errors were displayed with led_simpeProgress()
2021-10-04 16:41:16 +00:00
}
2021-03-02 22:48:20 +00:00
unsigned long loopmillis ;
2023-04-15 22:13:02 +00:00
2021-02-26 18:37:12 +00:00
// ########################## LOOP ##########################
void loop ( ) {
2023-02-28 23:31:46 +00:00
//Serial.print("Loopduration="); Serial.println(); //loopduration is at max 11ms
2021-02-26 18:37:12 +00:00
loopmillis = millis ( ) ; //read millis for this cycle
2023-02-28 23:31:46 +00:00
2023-04-15 22:13:02 +00:00
/*
2023-02-28 23:31:46 +00:00
// ____ Debugging pending serial byted for feedback
static int s2availmax = 0 ;
int _a2 = Serial2 . available ( ) ;
if ( _a2 > s2availmax ) {
s2availmax = _a2 ;
//Serial.print("new s2availmax"); Serial.println(s2availmax);
String _text = " Serial2 Bytes Available Max= " ;
_text + = s2availmax ;
writeLogComment ( Serial1 , loopmillis , _text ) ;
}
static int s3availmax = 0 ;
int _a3 = Serial3 . available ( ) ;
if ( _a3 > s3availmax ) {
s3availmax = _a3 ;
//Serial.print("new s3availmax"); Serial.println(s3availmax);
String _text = " Serial3 Bytes Available Max= " ;
_text + = s3availmax ;
writeLogComment ( Serial1 , loopmillis , _text ) ;
}
// ----- End of debug
bool newData2 = ReceiveSerial ( SerialcomFront , FeedbackFront , NewFeedbackFront , Serial2 ) ;
2021-03-20 17:45:18 +00:00
bool newData3 = ReceiveSerial ( SerialcomRear , FeedbackRear , NewFeedbackRear , Serial3 ) ;
2023-02-28 23:31:46 +00:00
//Max (40) or 22 available/pending bytes
2021-03-20 15:13:16 +00:00
2021-03-31 19:50:30 +00:00
if ( newData2 ) {
2023-03-02 20:18:48 +00:00
updateMotorparams ( motorparamsFront , FeedbackFront , loopmillis ) ;
2021-03-31 19:50:30 +00:00
}
if ( newData3 ) {
2023-03-02 20:18:48 +00:00
updateMotorparams ( motorparamsRear , FeedbackRear , loopmillis ) ;
2021-03-31 19:50:30 +00:00
}
2023-04-15 22:13:02 +00:00
*/
2023-02-28 23:31:46 +00:00
2021-03-20 15:13:16 +00:00
2023-02-28 23:31:46 +00:00
if ( loopmillis - last_adsread > ADSREADPERIOD ) { //read teensy adc and filter
last_adsread = loopmillis ;
if ( ADS . isBusy ( ) = = false ) //reads a register on ads
{
readADS ( ) ;
} else {
Serial . println ( " Unnecessary ADS poll. Increase ADSREADPERIOD " ) ;
}
}
static unsigned long last_adcread = 0 ;
2021-03-31 19:16:48 +00:00
if ( loopmillis - last_adcread > ADCREADPERIOD ) { //read teensy adc and filter
2021-03-20 15:13:16 +00:00
last_adcread = loopmillis ;
2023-02-28 23:31:46 +00:00
2021-03-31 19:16:48 +00:00
readADC ( ) ;
2023-02-28 23:31:46 +00:00
}
2021-05-15 16:56:42 +00:00
2023-02-28 23:31:46 +00:00
static unsigned long last_buttonread = 0 ;
if ( loopmillis - last_buttonread > BUTTONREADPERIOD ) { //read digital input states
last_buttonread = loopmillis ;
2021-05-15 16:56:42 +00:00
readButtons ( ) ;
2021-03-20 15:13:16 +00:00
}
2021-03-20 20:20:17 +00:00
2021-03-31 18:31:25 +00:00
2021-03-31 19:50:30 +00:00
failChecks ( ) ;
2021-02-26 18:37:12 +00:00
2023-04-15 22:13:02 +00:00
static unsigned long last_calculateSetSpeed = 0 ;
if ( loopmillis - last_calculateSetSpeed > SENDPERIOD ) {
calculateSetSpeed ( ) ;
}
escFront . update ( loopmillis ) ;
escRear . update ( loopmillis ) ;
/* TODO: remove this if, because everything contained in esc.update()
2021-03-31 19:16:48 +00:00
if ( loopmillis - last_send > SENDPERIOD ) { //Calculate motor stuff and send to motor controllers
2021-02-26 18:37:12 +00:00
last_send = loopmillis ;
2023-04-15 22:13:02 +00:00
//sendCMD();
2021-05-28 18:43:02 +00:00
//Update speed and trip
2021-05-29 10:20:55 +00:00
float _meanRPM = ( FeedbackFront . speedL_meas - FeedbackFront . speedR_meas + FeedbackRear . speedL_meas - FeedbackRear . speedR_meas ) / 4.0 ;
2021-05-28 18:43:02 +00:00
meanSpeedms = _meanRPM * wheelcircumference / 60.0 ; // Units: 1/min * m / 60s
trip + = abs ( meanSpeedms ) * ( SENDPERIOD / 1000.0 ) ;
//mah consumed
2021-06-14 18:56:28 +00:00
currentConsumed + = ( motorparamsFront . filtered_curL + motorparamsFront . filtered_curR + motorparamsRear . filtered_curL + motorparamsRear . filtered_curR ) * ( SENDPERIOD / 1000.0 ) / 3600.0 ; //amp hours
2021-02-26 18:37:12 +00:00
}
2023-04-15 22:13:02 +00:00
*/
2021-03-20 20:20:17 +00:00
2021-03-31 19:50:30 +00:00
//If needed write log to serial port
2023-04-15 22:13:02 +00:00
//checkLog(); //TODO remove
loggingLoop ( loopmillis , escFront , escRear ) ;
2021-03-31 19:50:30 +00:00
2021-03-31 19:58:23 +00:00
leds ( ) ;
2023-05-23 19:46:34 +00:00
led_update ( loopmillis , escFront , escRear ) ; //ws2812 led ring
2021-03-31 19:58:23 +00:00
2023-03-02 21:05:48 +00:00
static unsigned long last_display_update = 0 ;
if ( loopmillis - last_display_update > DISPLAYUPDATEPERIOD ) {
last_display_update = loopmillis ;
2023-05-23 20:01:07 +00:00
display_update ( escFront , escRear ) ;
2023-03-02 21:05:48 +00:00
}
2021-03-09 21:21:21 +00:00
}
2021-03-31 19:50:30 +00:00
2021-10-04 16:41:16 +00:00
time_t getTeensy3Time ( )
{
return Teensy3Clock . get ( ) ;
}
2021-03-31 19:50:30 +00:00
2021-03-09 21:21:21 +00:00
2021-03-31 19:16:48 +00:00
2023-02-28 23:31:46 +00:00
void readADS ( ) { //sequentially read ads and write to variable
/*static unsigned long _lastReadADS=0;
Serial . print ( " readADS Interval= " ) ; Serial . println ( millis ( ) - _lastReadADS ) ;
_lastReadADS = millis ( ) ; */
static uint8_t ads_input_switch = 0 ;
int16_t ads_val = ADS . getValue ( ) ; //get value from last selected channel
switch ( ads_input_switch ) {
case 0 : //Throttle Sensor A
ads_throttle_A_raw = ads_val ;
break ;
case 1 : //Throttle Sensor B
ads_throttle_B_raw = ads_val ;
break ;
case 2 : //Brake
ads_brake_raw = ads_val ;
break ;
case 3 : //Buttons TODO
ads_control_raw = ads_val ;
break ;
}
ads_input_switch + + ;
ads_input_switch % = 4 ; //max 4 channels
ADS . requestADC ( ads_input_switch ) ; // request a new one
}
2021-03-31 19:16:48 +00:00
2021-03-31 19:50:30 +00:00
// #### LOOPFUNCTIONS
2021-03-31 19:16:48 +00:00
void readADC ( ) {
2023-02-28 23:31:46 +00:00
/*Serial.print(ads_throttle_A_raw); Serial.print('\t');
Serial . print ( ads_throttle_B_raw ) ; Serial . print ( ' \t ' ) ;
Serial . print ( ads_brake_raw ) ; Serial . print ( ' \t ' ) ;
Serial . print ( ads_control_raw ) ; Serial . println ( ) ; */
throttle_raw = ads_throttle_A_raw * THROTTLE_ADC_FILTER + throttle_raw * ( 1 - THROTTLE_ADC_FILTER ) ; //apply filter
2022-08-28 13:42:10 +00:00
2023-02-28 23:31:46 +00:00
//maps throttle curve to be linear
2021-08-06 14:20:48 +00:00
throttle_pos = max ( 0 , min ( 1000 , linearizeThrottle ( throttle_raw ) ) ) ; //map and constrain
2023-02-28 23:31:46 +00:00
brake_raw = ads_brake_raw ;
2021-03-31 19:50:30 +00:00
brake_pos = max ( 0 , min ( 1000 , map ( brake_raw , calib_brake_min , calib_brake_max , 0 , 1000 ) ) ) ; //map and constrain
2021-05-29 14:36:39 +00:00
//brake_pos = (int16_t)(pow((brake_pos/1000.0),2)*1000);
2021-03-31 19:50:30 +00:00
2023-02-28 23:31:46 +00:00
2023-05-23 20:01:07 +00:00
if ( throttle_pos > 0 | | ( ( escFront . getMeanSpeed ( ) + escRear . getMeanSpeed ( ) ) / 2.0 ) > 0.5 | | ( ! reverse_enabled & & brake_pos > 0 ) ) { //reset idle time on these conditions (disables reverse driving)
2021-05-29 22:07:43 +00:00
last_notidle = loopmillis ;
reverse_enabled = false ;
}
2021-08-06 14:25:43 +00:00
2021-05-29 22:07:43 +00:00
if ( loopmillis - last_notidle > REVERSE_ENABLE_TIME ) {
reverse_enabled = true ;
}
2021-03-31 19:50:30 +00:00
int16_t throttlebreak_pos = throttle_pos - brake_pos * 2 ; //reduce throttle_when applying brake
throttle_pos = constrain ( throttlebreak_pos , 0 , 1000 ) ;
brake_pos = constrain ( - throttlebreak_pos / 2 , 0 , 1000 ) ; //rescale brake value from throttlebreak_pos
//Serial.print(throttle_raw); Serial.print(", "); Serial.print(brake_raw); Serial.print(", ");
//Serial.print(throttle_pos); Serial.print(", "); Serial.print(brake_pos); Serial.println();
2023-04-15 22:13:02 +00:00
/*
2021-03-31 19:50:30 +00:00
if ( digitalRead ( PIN_MODE_SWITCH ) ) { //pushed in, also high if cable got disconnected
2021-05-29 09:59:43 +00:00
if ( speedmode ! = SPEEDMODE_SLOW ) {
speedmode = SPEEDMODE_SLOW ;
2021-05-29 21:22:23 +00:00
max_acceleration_rate = SLOW_MAX_ACCELERATION_RATE ;
2021-05-29 09:59:43 +00:00
if ( loopmillis > WRITE_HEADER_TIME ) {
2023-04-15 22:13:02 +00:00
//writeLogComment(Serial1,loopmillis, "Mode switched to SPEEDMODE_SLOW");
2021-05-29 09:59:43 +00:00
}
}
2021-03-31 19:50:30 +00:00
} else { //button not pushed in
2021-05-29 09:59:43 +00:00
if ( speedmode ! = SPEEDMODE_NORMAL ) {
speedmode = SPEEDMODE_NORMAL ;
2021-05-29 21:22:23 +00:00
max_acceleration_rate = NORMAL_MAX_ACCELERATION_RATE ;
2021-05-29 09:59:43 +00:00
if ( loopmillis > WRITE_HEADER_TIME ) {
2023-04-15 22:13:02 +00:00
//writeLogComment(Serial1,loopmillis, "Mode switched to SPEEDMODE_NORMAL");
2021-05-29 09:59:43 +00:00
}
}
2021-03-31 19:50:30 +00:00
}
2023-04-15 22:13:02 +00:00
*/
2021-03-31 19:58:23 +00:00
2023-04-15 22:13:02 +00:00
/*
2021-03-31 19:58:23 +00:00
if ( speedmode = = SPEEDMODE_SLOW ) {
throttle_pos / = 2 ;
}
2023-04-15 22:13:02 +00:00
*/
2021-03-31 19:58:23 +00:00
2021-03-31 19:16:48 +00:00
}
void failChecks ( ) {
2023-04-15 22:13:02 +00:00
/*
2021-03-31 19:16:48 +00:00
if ( loopmillis > motorparamsFront . millis + FEEDBACKRECEIVETIMEOUT ) { //controller disconnected
if ( controllerFront_connected ) { //just got disconnected
controllerFront_connected = false ;
writeLogComment ( Serial1 , loopmillis , " Controller Front feedback timeout " ) ;
2023-02-28 23:31:46 +00:00
//Serial.println("Controller Front feedback timeout");
2021-03-31 19:16:48 +00:00
}
2021-05-29 09:53:06 +00:00
} else if ( ! controllerFront_connected & & loopmillis > FEEDBACKRECEIVETIMEOUT ) { //not timeouted but was before
2021-03-31 19:16:48 +00:00
controllerFront_connected = true ;
writeLogComment ( Serial1 , loopmillis , " Controller Front connected " ) ;
}
if ( loopmillis > motorparamsRear . millis + FEEDBACKRECEIVETIMEOUT ) { //controller disconnected
if ( controllerRear_connected ) { //just got disconnected
controllerRear_connected = false ;
writeLogComment ( Serial1 , loopmillis , " Controller Rear feedback timeout " ) ;
2023-02-28 23:31:46 +00:00
//Serial.println("Controller Rear feedback timeout");
2021-03-31 19:16:48 +00:00
}
2021-05-29 09:53:06 +00:00
} else if ( ! controllerRear_connected & & loopmillis > FEEDBACKRECEIVETIMEOUT ) { //not timeouted but was before
2021-03-31 19:16:48 +00:00
controllerRear_connected = true ;
writeLogComment ( Serial1 , loopmillis , " Controller Rear connected " ) ;
2023-04-15 22:13:02 +00:00
} */
2021-03-31 19:16:48 +00:00
2023-04-15 22:13:02 +00:00
controllers_connected = escFront . getControllerConnected ( ) & escRear . getControllerConnected ( ) ;
2021-03-31 19:16:48 +00:00
2021-03-31 19:50:30 +00:00
//ADC Range Check
2021-05-15 16:56:42 +00:00
if ( ( throttle_raw > = failsafe_throttle_min ) & ( throttle_raw < = failsafe_throttle_max ) ) { //inside safe range (to check if wire got disconnected)
2021-03-31 19:50:30 +00:00
throttle_ok_time = loopmillis ;
}
if ( loopmillis > throttle_ok_time + ADC_OUTOFRANGE_TIME ) { //not ok for too long
if ( ! error_throttle_outofrange ) {
error_throttle_outofrange = true ;
2023-04-15 22:13:02 +00:00
writeLogComment ( loopmillis , " Error Throttle ADC Out of Range " ) ;
2023-02-28 23:31:46 +00:00
2021-03-31 19:50:30 +00:00
}
2023-02-28 23:31:46 +00:00
//Serial.print("Error Throttle ADC Out of Range="); Serial.println(throttle_raw);
2021-03-31 19:50:30 +00:00
}
if ( ( brake_raw > = failsafe_brake_min ) & ( brake_raw < = failsafe_brake_max ) ) { //outside safe range. maybe wire got disconnected
brake_ok_time = loopmillis ;
}
if ( loopmillis > brake_ok_time + ADC_OUTOFRANGE_TIME ) { //not ok for too long
if ( ! error_brake_outofrange ) {
error_brake_outofrange = true ;
2023-04-15 22:13:02 +00:00
writeLogComment ( loopmillis , " Error Brake ADC Out of Range " ) ;
2021-03-31 19:50:30 +00:00
}
2023-02-28 23:31:46 +00:00
//Serial.print("Error Brake ADC Out of Range="); Serial.println(brake_raw);
}
# define ADS_MAX_READ_INTERVAL 100
if ( loopmillis - last_adsread > ADS_MAX_READ_INTERVAL ) {
if ( ! error_ads_max_read_interval ) {
error_ads_max_read_interval = true ;
2023-04-15 22:13:02 +00:00
writeLogComment ( loopmillis , " Error ADS Max read interval " ) ;
2023-02-28 23:31:46 +00:00
}
//Serial.print("Error ADS Max read interval=");Serial.println(loopmillis-last_adsread);
2021-03-31 19:50:30 +00:00
}
2023-02-28 23:31:46 +00:00
if ( ! controllers_connected | | error_brake_outofrange | | error_throttle_outofrange | | error_ads_max_read_interval ) { //any errors?
2021-03-31 19:16:48 +00:00
throttle_pos = 0 ;
brake_pos = 0 ;
}
}
2023-04-15 22:13:02 +00:00
void calculateSetSpeed ( ) {
int16_t brake_pos_expo = ( int16_t ) ( pow ( ( brake_pos / 1000.0 ) , 2 ) * 1000 ) ;
float brakepedal_current_multiplier = startbrakecurrent / 1000.0 ; //how much breaking (in Ampere) for unit of brake_pos (0<=brake_pos<=1000)
int16_t cmdreduce_constant = map ( brake_pos_expo , 0 , 1000 , 0 , ( int16_t ) ( brake_cmdreduce_proportional * SENDPERIOD / 1000 ) ) ; //reduce cmd value every cycle
float freewheel_current = startbrakecurrent_offset - brake_pos_expo * brakepedal_current_multiplier ; //above which driving current cmd send will be reduced more. increase value to decrease breaking. values <0 increases breaking above freewheeling
float freewheel_break_factor = 500.0 ; //speed cmd units per amp per second. 1A over freewheel_current decreases cmd speed by this amount (on average)
float filtered_currentFront = max ( escFront . getFiltered_curL ( ) , escFront . getFiltered_curR ( ) ) ;
float filtered_currentRear = max ( escRear . getFiltered_curL ( ) , escRear . getFiltered_curR ( ) ) ;
filtered_currentAll = max ( filtered_currentFront , filtered_currentRear ) ; //positive value is current Drawn from battery. negative value is braking current
if ( throttle_pos > = last_cmd_send ) { //accelerating
cmd_send + = constrain ( throttle_pos - cmd_send , 0 , max_acceleration_rate * SENDPERIOD / 1000 ) ; //if throttle higher than last applied value, apply throttle directly
} else { //freewheeling or braking
if ( filtered_currentAll > freewheel_current ) { //drive current too high
cmd_send - = max ( 0 , ( filtered_currentAll - freewheel_current ) * freewheel_break_factor * ( SENDPERIOD / 1000.0 ) ) ; //how much current over freewheel current, multiplied by factor. reduces cmd_send value
}
cmd_send - = max ( minimum_constant_cmd_reduce , cmdreduce_constant ) ; //reduce slowly anyways
}
cmd_send = constrain ( cmd_send , 0 , 1000 ) ;
last_cmd_send = cmd_send ;
int16_t cmd_send_toMotor = constrain ( cmd_send * ( 1.0 - ( brake_pos * 0.5 / 1000.0 ) ) , 0 , 1000 ) ; //brake "ducking"
if ( reverse_enabled ) {
cmd_send_toMotor - = brake_pos * REVERSE_SPEED ;
}
if ( ! controllers_connected | | ! armed ) { //controllers not connected or not armed
cmd_send = 0 ;
cmd_send_toMotor = 0 ; //safety off
}
escFront . setSpeed ( cmd_send_toMotor , cmd_send_toMotor ) ;
escRear . setSpeed ( cmd_send_toMotor , cmd_send_toMotor ) ;
log_update = true ;
}
/*
void sendCMD ( ) { //TODO: remove complete function because replaced by calculateSetSpeed()
// ## FOR REFERENCE:
//int16_t minimum_constant_cmd_reduce=1; //reduce cmd every loop by this constant amount when freewheeling/braking
//int16_t brake_cmdreduce_proportional=100; //cmd gets reduced by an amount proportional to brake position (ignores freewheeling). cmd_new-=brake_cmdreduce_proportional / second @ full brake. with BREAK_CMDREDUCE_CONSTANT=1000 car would stop with full brake at least after a second (ignoring influence of brake current control/freewheeling)
//float startbrakecurrent=3; //Ampere. "targeted brake current @full brake". at what point to start apply brake proportional to brake_pos. for everything above that cmd is reduced by freewheel_break_factor
//float startbrakecurrent_offset=0.1; //offset start point for breaking, because of reading fluctuations around 0A. set this slightly above idle current reading
2021-05-29 14:36:39 +00:00
int16_t brake_pos_expo = ( int16_t ) ( pow ( ( brake_pos / 1000.0 ) , 2 ) * 1000 ) ;
2021-05-29 10:14:13 +00:00
float brakepedal_current_multiplier = startbrakecurrent / 1000.0 ; //how much breaking (in Ampere) for unit of brake_pos (0<=brake_pos<=1000)
2021-05-29 14:36:39 +00:00
int16_t cmdreduce_constant = map ( brake_pos_expo , 0 , 1000 , 0 , ( int16_t ) ( brake_cmdreduce_proportional * SENDPERIOD / 1000 ) ) ; //reduce cmd value every cycle
2021-05-29 10:14:13 +00:00
2021-05-29 14:36:39 +00:00
float freewheel_current = startbrakecurrent_offset - brake_pos_expo * brakepedal_current_multiplier ; //above which driving current cmd send will be reduced more. increase value to decrease breaking. values <0 increases breaking above freewheeling
2021-05-13 10:18:47 +00:00
float freewheel_break_factor = 500.0 ; //speed cmd units per amp per second. 1A over freewheel_current decreases cmd speed by this amount (on average)
motorparamsFront . filtered_curL = filterMedian ( motorparamsFront . curL_DC ) / 50.0 ; //in Amps
motorparamsFront . filtered_curR = filterMedian ( motorparamsFront . curR_DC ) / 50.0 ; //in Amps
motorparamsRear . filtered_curL = filterMedian ( motorparamsRear . curL_DC ) / 50.0 ; //in Amps
motorparamsRear . filtered_curR = filterMedian ( motorparamsRear . curR_DC ) / 50.0 ; //in Amps
float filtered_currentFront = max ( motorparamsFront . filtered_curL , motorparamsFront . filtered_curR ) ;
float filtered_currentRear = max ( motorparamsRear . filtered_curL , motorparamsRear . filtered_curR ) ;
2021-05-15 16:56:42 +00:00
filtered_currentAll = max ( filtered_currentFront , filtered_currentRear ) ; //positive value is current Drawn from battery. negative value is braking current
2021-05-13 10:18:47 +00:00
if ( throttle_pos > = last_cmd_send ) { //accelerating
2021-05-29 21:22:23 +00:00
cmd_send + = constrain ( throttle_pos - cmd_send , 0 , max_acceleration_rate * SENDPERIOD / 1000 ) ; //if throttle higher than last applied value, apply throttle directly
2021-05-13 10:18:47 +00:00
} else { //freewheeling or braking
2021-05-15 16:56:42 +00:00
if ( filtered_currentAll > freewheel_current ) { //drive current too high
cmd_send - = max ( 0 , ( filtered_currentAll - freewheel_current ) * freewheel_break_factor * ( SENDPERIOD / 1000.0 ) ) ; //how much current over freewheel current, multiplied by factor. reduces cmd_send value
2021-03-31 19:16:48 +00:00
}
2021-05-29 10:14:13 +00:00
cmd_send - = max ( minimum_constant_cmd_reduce , cmdreduce_constant ) ; //reduce slowly anyways
2021-05-29 14:36:39 +00:00
2021-05-13 10:18:47 +00:00
}
2021-03-31 19:16:48 +00:00
2021-05-29 22:07:43 +00:00
2021-03-31 19:16:48 +00:00
2021-05-29 14:36:39 +00:00
cmd_send = constrain ( cmd_send , 0 , 1000 ) ;
2021-05-13 10:18:47 +00:00
last_cmd_send = cmd_send ;
2021-03-31 19:16:48 +00:00
2021-05-29 21:22:23 +00:00
int16_t cmd_send_toMotor = constrain ( cmd_send * ( 1.0 - ( brake_pos * 0.5 / 1000.0 ) ) , 0 , 1000 ) ; //brake "ducking"
2021-05-29 14:36:39 +00:00
2021-08-06 14:25:43 +00:00
2021-05-29 22:07:43 +00:00
if ( reverse_enabled ) {
2021-08-06 14:25:43 +00:00
cmd_send_toMotor - = brake_pos * REVERSE_SPEED ;
2021-05-29 22:07:43 +00:00
}
2021-05-29 14:36:39 +00:00
2021-05-29 22:07:43 +00:00
if ( ! controllers_connected | | ! armed ) { //controllers not connected or not armed
cmd_send = 0 ;
cmd_send_toMotor = 0 ; //safety off
}
2021-05-29 14:36:39 +00:00
2021-05-13 10:18:47 +00:00
//apply throttle command to all motors
2023-04-15 22:13:02 +00:00
2021-05-29 14:36:39 +00:00
motorparamsFront . cmdL = cmd_send_toMotor ;
motorparamsFront . cmdR = cmd_send_toMotor ;
motorparamsRear . cmdL = cmd_send_toMotor ;
motorparamsRear . cmdR = cmd_send_toMotor ;
2023-04-15 22:13:02 +00:00
2021-03-31 19:16:48 +00:00
2021-05-13 10:18:47 +00:00
if ( controllers_connected ) {
2023-04-15 22:13:02 +00:00
2021-05-13 10:18:47 +00:00
SendSerial ( CommandFront , motorparamsFront . cmdL , motorparamsFront . cmdR , Serial2 ) ;
SendSerial ( CommandRear , motorparamsRear . cmdL , motorparamsRear . cmdR , Serial3 ) ;
2021-03-31 19:16:48 +00:00
2023-04-15 22:13:02 +00:00
2021-05-13 10:18:47 +00:00
log_update = true ;
//Serial.print(cmd_send); Serial.print(", "); Serial.print(throttle_pos); Serial.print(", "); Serial.print(filtered_curFL*1000); Serial.print(", "); Serial.print(filtered_curFR*1000); Serial.print(", "); Serial.print(filtered_currentAll*1000); Serial.println()
2021-08-06 14:20:48 +00:00
2023-04-15 22:13:02 +00:00
} //else if(loopmillis>last_log_send+LOGMININTERVAL){
// //Serial.print(throttle_raw); Serial.println();
// Serial.print(linearizeThrottle(throttle_raw)); Serial.println();
// last_log_send=loopmillis;
//}
} */
2021-03-31 19:16:48 +00:00
2023-04-15 22:13:02 +00:00
/*
void checkLog ( ) { //TODO: remove
2021-05-15 16:56:42 +00:00
if ( ! log_header_written & & loopmillis > = WRITE_HEADER_TIME ) { //write header for log file after logger booted up
2021-10-04 16:41:16 +00:00
writeLogInfo ( Serial1 ) ;
2021-05-15 16:56:42 +00:00
writeLogHeader ( Serial1 ) ;
2021-03-31 19:16:48 +00:00
log_header_written = true ;
}
2021-05-15 16:56:42 +00:00
if ( log_header_written & & ( ( log_update & & loopmillis > last_log_send + LOGMININTERVAL ) | | loopmillis > last_log_send + LOGMAXINTERVAL ) ) {
2021-03-31 19:16:48 +00:00
last_log_send = loopmillis ;
log_update = false ;
writeLog ( Serial1 , loopmillis , motorparamsFront , motorparamsRear , FeedbackFront , FeedbackRear , filtered_currentAll , throttle_pos , brake_pos ) ;
}
2021-03-31 19:50:30 +00:00
}
2023-04-15 22:13:02 +00:00
*/
2021-03-31 19:50:30 +00:00
2023-03-02 20:18:48 +00:00
2021-03-31 19:58:23 +00:00
void leds ( ) {
2021-05-15 16:56:42 +00:00
//Start LED
if ( ! armed ) { //disarmed
digitalWrite ( PIN_LED_START , ( ( loopmillis / 1000 ) % 2 = = 0 ) ) ; //high is on for LED_START. blink every second. loopmillis 0 - 1000 led is on.
} else { //armed
digitalWrite ( PIN_LED_START , HIGH ) ; //LED On
}
2021-03-31 19:58:23 +00:00
if ( speedmode = = SPEEDMODE_SLOW ) {
digitalWrite ( PIN_MODE_LEDG , LOW ) ; //Green, low is on
digitalWrite ( PIN_MODE_LEDR , HIGH ) ;
} else if ( speedmode = = SPEEDMODE_NORMAL ) {
digitalWrite ( PIN_MODE_LEDG , HIGH ) ;
digitalWrite ( PIN_MODE_LEDR , LOW ) ; //Red
}
2021-05-15 16:56:42 +00:00
}
void readButtons ( ) {
2023-05-23 19:11:14 +00:00
bool button_start_longpress_flag = false ;
bool button_start_shortpress_flag = false ;
static bool button_start_wait_release_flag = false ;
bool last_button_start_state = button_start_state ;
2021-05-15 16:56:42 +00:00
if ( loopmillis > button_start_lastchange + DEBOUNCE_TIME ) { //wait some time after last change
if ( digitalRead ( PIN_START ) & & ! button_start_state ) { //start engine button pressed and was not pressed before
button_start_state = true ; //pressed
button_start_lastchange = loopmillis ; //save time for debouncing
} else if ( ! digitalRead ( PIN_START ) & & button_start_state ) { //released an was pressed before
2023-05-23 20:17:25 +00:00
button_start_state = false ; // not pressed
2021-05-15 16:56:42 +00:00
button_start_lastchange = loopmillis ; //save time for debouncing
}
}
2023-05-23 19:11:14 +00:00
if ( ! button_start_wait_release_flag ) { //action not prohibited currently
if ( button_start_state ) { //button is pressed
if ( ( loopmillis > button_start_lastchange + LONG_PRESS_ARMING_TIME ) ) { //pressed long
button_start_longpress_flag = true ;
button_start_wait_release_flag = true ; //do not trigger again until button released
}
} else if ( ! button_start_state & & last_button_start_state ) { //just released
button_start_shortpress_flag = true ;
}
}
2023-05-23 20:17:25 +00:00
if ( ! button_start_state ) { //release wait flag at end if button released
button_start_wait_release_flag = false ;
}
2023-05-23 19:11:14 +00:00
if ( button_start_shortpress_flag ) {
armed = false ; //disarm
writeLogComment ( loopmillis , " Disarmed by button " ) ;
}
if ( button_start_longpress_flag ) {
armed = true ; //arm if button pressed long enough
writeLogComment ( loopmillis , " Armed by button " ) ;
}
/* TODO: if works, remove this
2021-05-15 16:56:42 +00:00
if ( button_start_state ) { //pressed
if ( ( loopmillis > button_start_lastchange + LONG_PRESS_ARMING_TIME ) ) { //pressed long
2021-05-16 16:06:36 +00:00
if ( throttle_pos < = 0 & & brake_pos < = 0 & & controllers_connected & & ! armed ) { //brake or thottle not pressed, controllers connected
2021-05-15 16:56:42 +00:00
armed = true ; //arm if button pressed long enough
2023-04-15 22:13:02 +00:00
writeLogComment ( loopmillis , " Armed by button " ) ;
2021-05-15 16:56:42 +00:00
}
} else if ( armed ) { //not pressed long enough and is armed
armed = false ; //disarm
2023-04-15 22:13:02 +00:00
writeLogComment ( loopmillis , " Disarmed by button " ) ;
2021-05-15 16:56:42 +00:00
}
}
2023-05-23 19:11:14 +00:00
*/
2021-05-15 16:56:42 +00:00
2021-08-06 14:20:48 +00:00
}
uint16_t linearizeThrottle ( uint16_t v ) {
//input is raw adc value from hall sensor
//uses throttleCurvePerMM array to find linear approximation of actual throttle travel
//array has to be sorted !
uint8_t _searchpos = 0 ;
uint8_t arraysize = sizeof ( throttleCurvePerMM ) / sizeof ( throttleCurvePerMM [ 0 ] ) ;
while ( _searchpos < arraysize & & v > throttleCurvePerMM [ _searchpos ] ) { //find arraypos with value above input value
_searchpos + + ; //try next value
}
if ( _searchpos < = 0 ) { //lower limit
return 0 ;
}
if ( _searchpos > = arraysize ) { //upper limit
return 1000 ;
}
uint16_t nextLower = throttleCurvePerMM [ _searchpos - 1 ] ;
uint16_t nextHigher = throttleCurvePerMM [ _searchpos ] ;
float _linearThrottle = _searchpos + map ( v * 1.0 , nextLower , nextHigher , 0.0 , 1.0 ) ;
_linearThrottle / = arraysize ; //scale to 0-1
_linearThrottle * = 1000 ; //scale to 0-1000
return ( uint16_t ) _linearThrottle ;
2021-02-26 18:37:12 +00:00
}