audiomixer/controller/mixercontroller_w5100_pio/src/main.cpp

649 lines
20 KiB
C++
Raw Normal View History

/*
* Ideas/TODO:
* POT_MIN, POT_MAX as variable with calibration procedure. Drive slowly to both ends until value does not get lower.
* Motor error checking. Timeout overall (if regulation fails or stuck). Timeout movement (motor is tunring but no change in poti value detected). Move right direction.
* Relais switching (selection and muting)
* MQTT topics
*/
2020-03-31 15:13:21 +00:00
#include <Arduino.h>
#include <Adafruit_NeoPixel.h>
#ifdef __AVR__
#include <avr/power.h>
#endif
2020-04-01 09:37:09 +00:00
void reconnect();
uint32_t Wheel(byte WheelPos);
boolean srRead(uint8_t pbit);
void srWrite(uint8_t pbit, boolean state);
void callback(char* topic, byte* payload, unsigned int length);
void sendData();
2020-04-03 13:38:59 +00:00
void srShiftOut();
void setMuteInt(uint8_t i);
void setSelectionInt(uint8_t i);
boolean getSelection(uint8_t pbit);
boolean getMute(uint8_t pbit);
void setSelectionChannel(uint8_t i, boolean state);
void setMuteChannel(uint8_t i, boolean state);
2020-04-01 09:37:09 +00:00
2020-03-31 15:13:21 +00:00
#define LEDPIN 9 //PB1 = D9 = Pin15
Adafruit_NeoPixel leds = Adafruit_NeoPixel(9, LEDPIN, NEO_GRB + NEO_KHZ800);
uint8_t wheelpos=0;
#include "Ethernet.h"
#include "PubSubClient.h"
2020-04-03 13:38:59 +00:00
boolean useethernet=true;
2020-03-31 15:13:21 +00:00
//Ethernet and MQTT
String ip = "";
uint8_t mac[6] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x06};
#define CLIENT_ID "Mixer"
EthernetClient ethClient;
PubSubClient mqttClient;
2020-04-03 13:38:59 +00:00
2020-03-31 15:13:21 +00:00
long last_send=0;
2020-04-03 13:38:59 +00:00
#define MQTTRECONNECTDELAY 5000
unsigned long last_mqttreconnectattempt=0;
2020-03-31 15:13:21 +00:00
//Serial
long last_serialdebug=0;
#define INTERVAL_SERIALDEBUG 200
//Inputs
2020-04-01 09:37:09 +00:00
#include "button.h"
2020-03-31 15:13:21 +00:00
#define PIN_BUTTON A3 //A3 = PC3, defining PCx as pin doesnt work
#define PIN_ENCA A2 //A2 = PC2
#define PIN_ENCB A1 //A1 = PC1
2020-04-01 09:37:09 +00:00
Button button_knob;
2020-03-31 15:13:21 +00:00
boolean button_flag=false; //true if button pressed
boolean button_released=true;
long last_button_released=0; //last time button has been released (for debounce)
//Shift Register 595
//connections: https://www.arduino.cc/en/tutorial/ShiftOut
#define SRLATCH PD4 //D4 = PD4
#define SRCLOCK PD3 //D3 = PD3
#define SRDATA PD2 //D2 = PD2
uint16_t srbits=0;
2020-04-03 13:38:59 +00:00
#define NUMSELECTCHANNELS 8
#define NUMMUTECHANNELS 8
2020-03-31 15:13:21 +00:00
#include <Encoder.h>
Encoder volEnc(PIN_ENCA,PIN_ENCB);
float encoderMultiplier=4.0;
//Servo stuff
#define PIN_MOTOR_IN1 PD5 //to L293(pin2) Motor IN1
#define PIN_MOTOR_IN2 PD6 //to L293(pin7) Motor IN2
//#define SRPIN_MOTOR_IN1 1 //L293(pin2) Motor IN1 -- moved to atmega pin
//#define SRPIN_MOTOR_IN2 2 //L293(pin7) Motor IN2 -- moved to atmega pin
uint8_t motorspeed=0;
2020-03-31 15:13:21 +00:00
#define PIN_POT A0 //A0 = PC0, reference potentiometer wiper
#define DEADZONE_POTI 5 //maximum allowed error. stop when reached this zone
#define POT_MIN 10 //minimum value pot can reach
#define POT_MAX 1010 //maximum value pot can reach
#define POTIFILTER 0.8 //0 to 1. 1 means old value stays forever
int poti_set; //set value, initial value will be read from poti
2020-03-31 15:13:21 +00:00
int poti_read=0; //read value from poti
boolean poti_reachedposition=true; //set to true if position reached. after that stop turning
//#define MOTOR_STOP(); srWrite(SRPIN_MOTOR_IN1,LOW); srWrite(SRPIN_MOTOR_IN2,LOW);
//#define MOTOR_LEFT(); srWrite(SRPIN_MOTOR_IN1,LOW); srWrite(SRPIN_MOTOR_IN2,HIGH);
//#define MOTOR_RIGHT(); srWrite(SRPIN_MOTOR_IN1,HIGH); srWrite(SRPIN_MOTOR_IN2,LOW);
//#define MOTOR_TURNING() (srRead(SRPIN_MOTOR_IN1) != srRead(SRPIN_MOTOR_IN2))
#define MOTOR_STOP(); digitalWrite(PIN_MOTOR_IN1,LOW); digitalWrite(PIN_MOTOR_IN2,LOW);
#define MOTOR_LEFT(); digitalWrite(PIN_MOTOR_IN1,LOW); digitalWrite(PIN_MOTOR_IN2,HIGH);
#define MOTOR_RIGHT(); digitalWrite(PIN_MOTOR_IN1,HIGH); digitalWrite(PIN_MOTOR_IN2,LOW);
#define MOTOR_LEFT_PWM(); digitalWrite(PIN_MOTOR_IN1,LOW); analogWrite(PIN_MOTOR_IN2,motorspeed);
#define MOTOR_RIGHT_PWM(); analogWrite(PIN_MOTOR_IN1,motorspeed); digitalWrite(PIN_MOTOR_IN2,LOW);
2020-03-31 15:13:21 +00:00
#define MOTOR_TURNING() (digitalRead(PIN_MOTOR_IN1) != digitalRead(PIN_MOTOR_IN2))
//Motorcheck
long last_motorcheck=0;
#define INTERVAL_MOTORCHECK 100 //check motor movement every x ms
//int poti_read_last=0;
//int motor_vel=0; //analog read units per second //TODO: reintroduce into code or remove
//#define MINIMUM_MOTORVEL 20 //minimum velocity motor should turn wenn active
//#define MOTOR_FAILTIME 500 //in ms. if motor did not turn fox x amount of time at least with MINIMUM_MOTORVEL an error will initiate
//long last_motorTooSlow=0; //typically 0
float motorP=1.0;
float motorI=0.1;
float potidifference_integral=0;
#define MOTORI_ANTIWINDUP 32 //maximum value for (potidifference_integral*motorI). time depends on INTERVAL_MOTORCHECK
long last_potidifferenceLow=0;
#define DEADZONETIMEUNTILREACHED 500 //time [ms] poti read value has to be inside of deadzone to set reachedposition flag (and stop regulating)
2020-03-31 15:13:21 +00:00
//error
boolean motorerror=false;
2020-03-31 15:13:21 +00:00
void setup() {
pinMode(PIN_BUTTON,INPUT_PULLUP);
2020-04-01 09:37:09 +00:00
button_knob = Button();
2020-03-31 15:13:21 +00:00
pinMode(PIN_POT,INPUT);
2020-03-31 15:13:21 +00:00
pinMode(SRLATCH, OUTPUT);
pinMode(SRCLOCK, OUTPUT);
pinMode(SRDATA, OUTPUT);
Serial.begin(9600);
while (!Serial) {};
Serial.println("Starting");
leds.begin();
2020-04-03 13:38:59 +00:00
leds.clear();
2020-03-31 15:13:21 +00:00
for(uint8_t i=0;i<leds.numPixels();i++){ //set color of all leds
leds.setPixelColor(i, leds.Color(100,100,100));
}
leds.show();
if (useethernet)
{
Serial.println("Setting up ethernet connection via DHCP");
if (Ethernet.begin(mac) == 0) { // setup ethernet communication using DHCP
useethernet=false;
//Unable to configure Ethernet using DHCP
Serial.println("Unable to configure Ethernet using DHCP");
delay(200);
//for (;;);
}else{
useethernet=true;
Serial.println("Ethernet configured via DHCP");
Serial.print("IP address: ");
Serial.println(Ethernet.localIP());
Serial.println();
ip = String (Ethernet.localIP()[0]);
ip = ip + ".";
ip = ip + String (Ethernet.localIP()[1]);
ip = ip + ".";
ip = ip + String (Ethernet.localIP()[2]);
ip = ip + ".";
ip = ip + String (Ethernet.localIP()[3]);
//Serial.println(ip);
// setup mqtt client
2020-04-03 13:38:59 +00:00
Serial.println("Configuring MQTT");
2020-03-31 15:13:21 +00:00
mqttClient.setClient(ethClient);
mqttClient.setServer("10.0.0.1", 1883);
2020-04-03 13:38:59 +00:00
Serial.println("MQTT configured");
2020-03-31 15:13:21 +00:00
mqttClient.setCallback(callback);
}
}else{
2020-04-03 13:38:59 +00:00
Serial.println("Eth disabled");
2020-03-31 15:13:21 +00:00
}
poti_set=analogRead(PIN_POT);
2020-03-31 15:13:21 +00:00
Serial.println("Ready");
last_send = millis();
}
void reconnect() {
// Loop until reconnected
2020-04-03 13:38:59 +00:00
if (!mqttClient.connected()) {
2020-03-31 15:13:21 +00:00
Serial.print("Attempting MQTT connection...");
// Attempt to connect
if (mqttClient.connect(CLIENT_ID)) {
Serial.println("connected");
mqttClient.publish("audiomixer/ip", ip.c_str()); //Publish own ip
2020-04-03 13:38:59 +00:00
mqttClient.subscribe("audiomixer/volume/set"); //subscribe to /set, republish without /set
mqttClient.subscribe("audiomixer/mute/set"); //without range
for (uint8_t i=0;i<NUMMUTECHANNELS;i++) { //with range
String sub_topic="audiomixer/mute_"+String(i)+"/set";
mqttClient.subscribe((char*) sub_topic.c_str());
}
mqttClient.subscribe("audiomixer/select/set"); //without range
for (uint8_t i=0;i<NUMSELECTCHANNELS;i++) { //with range
String sub_topic="audiomixer/select_"+String(i)+"/set";
mqttClient.subscribe((char*) sub_topic.c_str());
}
2020-03-31 15:13:21 +00:00
} else {
Serial.print("failed, rc=");
Serial.print(mqttClient.state());
}
}
}
void loop() {
long loopmillis=millis();
if (useethernet){
if (!mqttClient.connected()) {
2020-04-03 13:38:59 +00:00
if (loopmillis-last_mqttreconnectattempt > MQTTRECONNECTDELAY) {
Serial.println("Reconnecting to mqtt");
reconnect();
last_mqttreconnectattempt=loopmillis;
}
2020-03-31 15:13:21 +00:00
}
mqttClient.loop();
}
//Serial Input ##############################################
2020-04-01 09:37:09 +00:00
/*For debugging
2020-03-31 15:13:21 +00:00
while (Serial.available() > 0) {
int _value = Serial.parseInt();
if (Serial.read() == '\n') {
Serial.print("value=");
Serial.println(_value);
//poti_set=_value;
//poti_reachedposition=false; //aim for new position
srWrite(_value,!srRead(_value));
}
}
2020-04-01 09:37:09 +00:00
*/
2020-03-31 15:13:21 +00:00
//Inputs ###################################################
poti_read=poti_read*POTIFILTER + (1.0-POTIFILTER)*analogRead(PIN_POT); //read poti
button_knob.update(millis(),!digitalRead(PIN_BUTTON)); //Update routine
2020-04-01 09:37:09 +00:00
if (button_knob.buttonPressed()){
Serial.println("Button Pressed");
}else if(button_knob.buttonHold()){
Serial.println("Button hold");
2020-03-31 15:13:21 +00:00
}
2020-04-01 09:37:09 +00:00
2020-03-31 15:13:21 +00:00
//Read Encoder to velocity "volEncVel"
int volEncVel=0;
int _volEnc=volEnc.read();
if (_volEnc!=0){ //encoder moved
volEncVel=_volEnc;
volEnc.write(0); //reset value
}
//Input Handling
if (volEncVel!=0){ //knob moved
poti_set+=volEncVel*encoderMultiplier; //change poti set value
poti_set=constrain(poti_set, POT_MIN,POT_MAX);
poti_reachedposition=false;
}
//Motor Movement Routine #################
/*
2020-03-31 15:13:21 +00:00
if (error==0){ //no errors
if (!poti_reachedposition && abs(poti_read-poti_set)>DEADZONE_POTI){ //difference too high
2020-03-31 15:13:21 +00:00
if (poti_read-poti_set < 0){
MOTOR_LEFT();
}else{
MOTOR_RIGHT();
}
}else if(!poti_reachedposition){ //position reached but flag not set
MOTOR_STOP();
Serial.print("reached:");
Serial.print(" set=");
Serial.print(poti_set);
Serial.print(" is=");
Serial.print(poti_read);
Serial.print(" vel=");
Serial.println();
poti_reachedposition=true; //position reached
}
if ( loopmillis > last_motorcheck+INTERVAL_MOTORCHECK){
last_motorcheck=loopmillis;
motor_vel=(poti_read-poti_read_last)*1000 /INTERVAL_MOTORCHECK ; //calculate current motor velocity
poti_read_last=poti_read;
//motor fail check
if (MOTOR_TURNING() && abs(motor_vel)<MINIMUM_MOTORVEL){ //motor is turning too slow
if (last_motorTooSlow==0){ //first time slow motor recognized
last_motorTooSlow=loopmillis;
}else if (loopmillis-last_motorTooSlow > MOTOR_FAILTIME){
error=MOTORDIDNOTTURN;
Serial.println("MOTORDIDNOTTURN");
}
}else if (last_motorTooSlow>0){ //was recognized too slow but is now turning fast again
last_motorTooSlow=0; //reset
}
}
}else{ //an error occured. error!=0
MOTOR_STOP();
}
*/
//Test
/*if (poti_set == 512){
MOTOR_STOP();
}else if (poti_set < 512){
motorspeed=(512-poti_set)/2;
MOTOR_LEFT_PWM();
}else if (poti_set > 512){
motorspeed=(poti_set-512)/2;
MOTOR_RIGHT_PWM();
}*/
if (!motorerror) //motor not stuck etc
{
if (loopmillis-last_motorcheck>INTERVAL_MOTORCHECK)
{
last_motorcheck=loopmillis;
int potidifference=poti_set-poti_read; //positive means poti needs to be moved higher. max poti value is 1023
if (poti_reachedposition) {
motorspeed=0;
potidifference_integral=0;
MOTOR_STOP();
}else{ //not reached position
int _motormove=0; //negative: move left, positive: move right. abs value: speed. 0 <= abs(_motormove) <= 255
potidifference_integral+=potidifference*motorI;
2020-04-03 13:38:59 +00:00
potidifference_integral=constrain(potidifference_integral,-MOTORI_ANTIWINDUP,MOTORI_ANTIWINDUP); //constrain
_motormove=potidifference*motorP+potidifference_integral;
motorspeed=constrain(abs(_motormove), 0,255);
if (poti_read<=POT_MIN && _motormove<0) { //stop motor if soft endstops reached and wants to turn that way
MOTOR_STOP();
potidifference_integral=0;
_motormove=0;
}else if (poti_read>=POT_MAX && _motormove>0){ //stop motor if soft endstops reached and wants to turn that way
MOTOR_STOP();
potidifference_integral=0;
_motormove=0;
}else{ //no endstop reached
if (_motormove<0) {
MOTOR_LEFT_PWM();
}else if (_motormove>0) {
MOTOR_RIGHT_PWM();
}else{
MOTOR_STOP();
}
}
if (abs(potidifference)<DEADZONE_POTI) {
if (last_potidifferenceLow==0){
last_potidifferenceLow=loopmillis; //save millis first time entered deadzone
}
if (loopmillis-last_potidifferenceLow>DEADZONETIMEUNTILREACHED) {
poti_reachedposition=true;
}
}else{
last_potidifferenceLow = 0;
}
}
}
}
2020-03-31 15:13:21 +00:00
if ( loopmillis > last_serialdebug+INTERVAL_SERIALDEBUG){
last_serialdebug=loopmillis;
Serial.print(" set=");
Serial.print(poti_set);
Serial.print(" is=");
Serial.print(poti_read);
Serial.print(" motorspeed=");
Serial.print(motorspeed);
Serial.print(" iValue=");
Serial.print(potidifference_integral);
2020-03-31 15:13:21 +00:00
Serial.println("");
if (button_flag){ //TODO: remove hier if correct behaviour implemented
Serial.println("BUTTON Pressed");
button_flag=false; //clear flag to reenable button triggering.
}
for(uint8_t i=0;i<leds.numPixels();i++){ //set color of all leds
leds.setPixelColor(i, Wheel(wheelpos+i*10));
}
wheelpos+=5;
leds.show();
}
}
void sendData() {
char msgBuffer[20];
float h = 50;
float testvalue = 42;
/*
Serial.print("testvalue: ");
Serial.print(testvalue);
Serial.println();
if (mqttClient.connect(CLIENT_ID)) {
mqttClient.publish("audiomixer/messwert/parameter", dtostrf(testvalue, 6, 2, msgBuffer));
//mqttClient.publish(DEVICENAME+"/br/nb/deur", (statusBD == HIGH) ? "OPEN" : "CLOSED");
}*/
}
void callback(char* topic, byte* payload, unsigned int length) {
payload[length] = '\0'; //add end of string character
2020-04-03 13:38:59 +00:00
String spayload = String((char*)payload);
2020-03-31 15:13:21 +00:00
Serial.print("Message arrived [");
Serial.print(topic);
Serial.print("] ");//MQTT_BROKER
2020-04-03 13:38:59 +00:00
for (unsigned int i = 0; i < length; i++) {
2020-03-31 15:13:21 +00:00
Serial.print((char)payload[i]);
}
Serial.println();
//if (strncmp((const char*)payload, "ON", 2) == 0) {
//}
2020-04-03 13:38:59 +00:00
//if (strncmp((const char*)topic, "audiomixer/volume/set",sizeof(topic)) == 0) {
if (String(topic).equals("audiomixer/volume/set")){
2020-03-31 15:13:21 +00:00
//Serial.println("republish");
2020-04-03 13:38:59 +00:00
float _floatvalue = spayload.toFloat();
_floatvalue=constrain(_floatvalue,0.0,100.0);
Serial.print("Volume string=");
Serial.println(spayload);
2020-03-31 15:13:21 +00:00
Serial.print("setvalue=");
Serial.println(_floatvalue);
poti_set=constrain(map(_floatvalue,0.0,100.0,POT_MIN,POT_MAX),POT_MIN,POT_MAX); //set new poti position
poti_reachedposition=false; //aim for new position
2020-04-03 13:38:59 +00:00
char pub_payload[8]; // Buffer big enough for 7-character float
dtostrf(_floatvalue, 1, 2, pub_payload);
mqttClient.publish("audiomixer/volume", pub_payload);
}else if (String(topic).equals("audiomixer/mute/set")) { //withouth range
Serial.print("Mute string="); Serial.println(spayload);
uint16_t ipayload=spayload.toInt();
if (spayload.equalsIgnoreCase("false")) {
setMuteInt(0); //all unmuted
}else if (spayload.equalsIgnoreCase("true")) {
setMuteInt(pow(2,NUMMUTECHANNELS)-1); //all muted
}else if (ipayload>=0 && ipayload<((uint16_t)1<<NUMMUTECHANNELS)){ //in range
setMuteInt(ipayload); //set bits directly
}
//publish all states
for (uint8_t i=0;i<NUMMUTECHANNELS;i++) {
String pub_topic = "audiomixer/mute_"+String(i);
boolean _mutestate=getMute(i);
if (_mutestate) {
mqttClient.publish((char*) pub_topic.c_str(), "true");
}else{
mqttClient.publish((char*) pub_topic.c_str(), "false");
}
}
}else if (String(topic).startsWith("audiomixer/mute_")) { //with range
Serial.print("Mute range string="); Serial.println(spayload);
uint8_t _index=255;
for (uint8_t i=0; i<NUMMUTECHANNELS && _index==255; i++) {
if (String(topic).equals("audiomixer/mute_"+String(i)+"/set")) {
_index=i;
}
}
Serial.print("Found index:"); Serial.println(_index);
if (_index==255) {
Serial.println("Index out of range");
}else{ //index ok
String pub_topic = "audiomixer/mute_"+String(_index);
if (spayload.equalsIgnoreCase("false")) {
setMuteChannel(_index,false);
mqttClient.publish((char*) pub_topic.c_str(), "false");
}else if (spayload.equalsIgnoreCase("true")) {
setMuteChannel(_index,true);
mqttClient.publish((char*) pub_topic.c_str(), "true");
}
}
}else if (String(topic).equals("audiomixer/select/set")) { //withouth range
Serial.print("Select string="); Serial.println(spayload);
uint16_t ipayload=spayload.toInt();
if (spayload.equalsIgnoreCase("false")) {
setSelectionInt(0); //all select to NC
}else if (spayload.equalsIgnoreCase("true")) {
setSelectionInt(pow(2,NUMSELECTCHANNELS)-1); //all select to NO
}else if (ipayload>=0 && ipayload<((uint16_t)1<<NUMSELECTCHANNELS)){ //in range
setSelectionInt(ipayload); //set bits directly
}
//publish all states
for (uint8_t i=0;i<NUMSELECTCHANNELS;i++) {
String pub_topic = "audiomixer/select_"+String(i);
boolean _selectstate=getSelection(i);
if (_selectstate) {
mqttClient.publish((char*) pub_topic.c_str(), "true");
}else{
mqttClient.publish((char*) pub_topic.c_str(), "false");
}
}
}else if (String(topic).startsWith("audiomixer/select_")) {
Serial.print("Select string="); Serial.println(spayload);
uint8_t _index=255;
for (uint8_t i=0; i<NUMSELECTCHANNELS && _index==255; i++) {
if (String(topic).equals("audiomixer/select_"+String(i)+"/set")) {
_index=i;
}
}
Serial.print("Found index:"); Serial.println(_index);
if (_index==255) {
Serial.println("Index out of range");
}else{ //index ok
String pub_topic = "audiomixer/select_"+String(_index);
if (spayload.equalsIgnoreCase("false")) {
setSelectionChannel(_index,false);
mqttClient.publish((char*) pub_topic.c_str(), "false");
}else if (spayload.equalsIgnoreCase("true")) {
setSelectionChannel(_index,true);
mqttClient.publish((char*) pub_topic.c_str(), "true");
}
}
2020-03-31 15:13:21 +00:00
}
}
2020-04-01 09:37:09 +00:00
void srWrite(uint8_t pbit, boolean state){ //change bit to state
2020-03-31 15:13:21 +00:00
if (state==true){
2020-04-01 09:37:09 +00:00
srbits |= 1UL << pbit; //set bit
2020-03-31 15:13:21 +00:00
}else{
2020-04-01 09:37:09 +00:00
srbits &= ~(1UL << pbit); //clear bit
2020-03-31 15:13:21 +00:00
}
2020-04-03 13:38:59 +00:00
srShiftOut();
}
void srShiftOut(){
2020-03-31 15:13:21 +00:00
digitalWrite(SRLATCH, LOW);
shiftOut(SRDATA, SRCLOCK, MSBFIRST, srbits>>8);
shiftOut(SRDATA, SRCLOCK, MSBFIRST, srbits);
digitalWrite(SRLATCH, HIGH);
}
2020-04-01 09:37:09 +00:00
boolean srRead(uint8_t pbit){ //get state at bit
return (srbits >> pbit) & 1U;
2020-03-31 15:13:21 +00:00
}
uint32_t Wheel(byte WheelPos) {
WheelPos = 255 - WheelPos;
if(WheelPos < 85) {
return leds.Color(255 - WheelPos * 3, 0, WheelPos * 3);
}
if(WheelPos < 170) {
WheelPos -= 85;
return leds.Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
WheelPos -= 170;
return leds.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
}
2020-04-03 13:38:59 +00:00
void setMuteInt(uint8_t i) {
uint16_t mask=(( (uint16_t)1<<(NUMMUTECHANNELS))-1 )<<NUMSELECTCHANNELS;
srbits = ((i<<NUMSELECTCHANNELS) & mask) | (srbits & ~mask);
srShiftOut();
Serial.println(srbits);
}
boolean getMute(uint8_t pbit) {
return srbits & (1<<(pbit+NUMSELECTCHANNELS)); //check bit at position
}
void setSelectionInt(uint8_t i) {
uint16_t mask=(( (uint16_t)1<<(NUMMUTECHANNELS))-1 )<<NUMSELECTCHANNELS;
srbits = (srbits & mask) | (i & ~mask);
srShiftOut();
}
boolean getSelection(uint8_t pbit) {
return srbits & (1<<pbit); //check bit at position
}
void setSelectionChannel(uint8_t i, boolean state){
if (i<NUMSELECTCHANNELS) {
srWrite(i, state);
}
}
void setMuteChannel(uint8_t i, boolean state){
if (i<NUMMUTECHANNELS) {
srWrite(i+NUMSELECTCHANNELS, state); //offset. selection is first shift register
}
}