Effekte aktualisiert

This commit is contained in:
starcalc 2018-10-23 21:02:55 +02:00
parent 3cb8f1cb20
commit 8e5e358da4
7 changed files with 1527 additions and 359 deletions

View File

@ -1,14 +1,35 @@
#include "NeoPatterns.h" #include "NeoPatterns.h"
NeoPatterns::NeoPatterns(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)()) : NeoPatterns::NeoPatterns(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)(), void (*callbackDebug)(String)) :
Adafruit_NeoPixel(pixels, pin, type) Adafruit_NeoPixel(pixels, pin, type)
{ {
OnComplete = callback; OnComplete = callback;
OnDebugOutput = callbackDebug;
//Allocate a zero initialized block of memory big enough to hold "pixels" uint8_t.
pixelR = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelG = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelB = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelR_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelG_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelB_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
// Max. MAX_DROPS Drops: Location
drop = ( uint8_t* ) calloc (MAX_DROPS, sizeof( uint8_t ) );
// Max. MAX_DROPS Drops: Brightness (Default to 0)
dropBrightness = ( uint8_t* ) calloc (MAX_DROPS, sizeof( uint8_t ) );
// Max. MAX_RINGS Rings: Location
ring = ( uint8_t* ) calloc (MAX_RINGS, sizeof( uint8_t ) );
// Max. MAX_RINGS Rings: Brightness (Default to 0)
ringBrightness = ( uint8_t* ) calloc (MAX_RINGS, sizeof( uint8_t ) );
ringDistance = ( uint8_t* ) calloc (MAX_RINGS, sizeof( uint8_t ) );
} }
void NeoPatterns::Update() { void NeoPatterns::Update() {
if ((millis() - lastUpdate) > Interval) // time to update if ((millis() - lastUpdate) > Interval) // time to update
{ {
// OnDebugOutput(String("Updating at " ) + String(millis()));
lastUpdate = millis(); lastUpdate = millis();
switch (ActivePattern) switch (ActivePattern)
{ {
@ -18,6 +39,9 @@ void NeoPatterns::Update(){
case THEATER_CHASE: case THEATER_CHASE:
TheaterChaseUpdate(); TheaterChaseUpdate();
break; break;
case BVB:
BVBChaseUpdate();
break;
case COLOR_WIPE: case COLOR_WIPE:
ColorWipeUpdate(); ColorWipeUpdate();
break; break;
@ -30,16 +54,48 @@ void NeoPatterns::Update(){
case RANDOM_FADE: case RANDOM_FADE:
RandomFadeUpdate(); RandomFadeUpdate();
break; break;
case RANDOM_FADE_SINGLE:
RandomFadeSingleUpdate();
break;
case SMOOTH:
SmoothUpdate();
break;
case PLASMA:
PlasmaUpdate();
break;
case FILL:
break;
case RANDOM:
break;
case FIRE:
FireUpdate();
break;
case FIREWORKS:
FireworksUpdate();
break;
case DROP:
DropUpdate();
break;
case RINGS:
RingsUpdate();
break;
case SCANNER_RANDOM:
ScannerRandomUpdate();
break;
case NONE: case NONE:
break; break;
default: default:
break; break;
} }
} else {
delay(1);
// Serial.print(".");
} }
} }
void NeoPatterns::Increment() void NeoPatterns::Increment()
{ {
// OnDebugOutput(String(Index) + " / " + String(TotalSteps));
if (Direction == FORWARD) if (Direction == FORWARD)
{ {
Index++; Index++;
@ -48,7 +104,7 @@ void NeoPatterns::Increment()
Index = 0; Index = 0;
if (OnComplete != NULL) if (OnComplete != NULL)
{ {
OnComplete(); // call the comlpetion callback OnComplete(); // call the completion callback
} }
} }
} }
@ -60,7 +116,7 @@ void NeoPatterns::Increment()
Index = TotalSteps - 1; Index = TotalSteps - 1;
if (OnComplete != NULL) if (OnComplete != NULL)
{ {
OnComplete(); // call the comlpetion callback OnComplete(); // call the completion callback
} }
} }
} }
@ -70,16 +126,17 @@ void NeoPatterns::Reverse(){
if (Direction == FORWARD) if (Direction == FORWARD)
{ {
Direction = REVERSE; Direction = REVERSE;
Index = TotalSteps-1; // Index = TotalSteps - 1;
} }
else else
{ {
Direction = FORWARD; Direction = FORWARD;
Index = 0; // Index = numPixels()-TotalSteps;
} }
} }
void NeoPatterns::None(){ void NeoPatterns::None(uint8_t interval) {
Interval = interval;
if (ActivePattern != NONE) { if (ActivePattern != NONE) {
clear(); clear();
show(); show();
@ -87,6 +144,8 @@ void NeoPatterns::None(){
ActivePattern = NONE; ActivePattern = NONE;
} }
/****************** Effects ******************/
void NeoPatterns::RainbowCycle(uint8_t interval, direction dir) { void NeoPatterns::RainbowCycle(uint8_t interval, direction dir) {
ActivePattern = RAINBOW_CYCLE; ActivePattern = RAINBOW_CYCLE;
Interval = interval; Interval = interval;
@ -117,19 +176,55 @@ void NeoPatterns::TheaterChase(uint32_t color1, uint32_t color2, uint8_t interva
void NeoPatterns::TheaterChaseUpdate() { void NeoPatterns::TheaterChaseUpdate() {
for (int i = 0; i < numPixels(); i++) for (int i = 0; i < numPixels(); i++)
{ {
if ((i + Index) % 3 == 0) if ((i + Index) % 8 == 0)
{ {
setPixelColor(i, Color1); setPixelColor(i, Color1);
} }
else else
{ {
setPixelColor(i, Color2); // Reduce brightness for the base pixels
float _brightness = 0.2;
uint8_t _r = (uint8_t)(Color2 >> 16);
uint8_t _g = (uint8_t)(Color2 >> 8);
uint8_t _b = (uint8_t)Color2;
setPixelColor(i, Color(_r * _brightness, _g * _brightness, _b * _brightness));
} }
} }
show(); show();
Increment(); Increment();
} }
void NeoPatterns::BVBChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir) {
ActivePattern = BVB;
Interval = interval;
TotalSteps = numPixels();
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
void NeoPatterns::BVBChaseUpdate() {
for (int i = 0; i < numPixels(); i++)
{
if ((i + Index) % 8 == 0)
{
setPixelColor(i, Color1);
}
else
{
// Reduce brightness for the base pixels
float _brightness = 0.2;
uint8_t _r = (uint8_t)(Color2 >> 16);
uint8_t _g = (uint8_t)(Color2 >> 8);
uint8_t _b = (uint8_t)Color2;
setPixelColor(i, Color(_r * _brightness, _g * _brightness, _b * _brightness));
}
}
show();
Increment();
}
void NeoPatterns::ColorWipe(uint32_t color, uint8_t interval, direction dir) void NeoPatterns::ColorWipe(uint32_t color, uint8_t interval, direction dir)
{ {
ActivePattern = COLOR_WIPE; ActivePattern = COLOR_WIPE;
@ -149,7 +244,7 @@ void NeoPatterns::ColorWipeUpdate()
} }
// Initialize for a SCANNNER // Initialize for a SCANNNER
void NeoPatterns::Scanner(uint32_t color1, uint8_t interval, bool colorful) void NeoPatterns::Scanner(uint32_t color1, uint8_t interval, bool colorful, bool spiral)
{ {
ActivePattern = SCANNER; ActivePattern = SCANNER;
Interval = interval; Interval = interval;
@ -158,6 +253,7 @@ void NeoPatterns::Scanner(uint32_t color1, uint8_t interval, bool colorful)
Index = 0; Index = 0;
wPos = 0; wPos = 0;
this->colorful = colorful; this->colorful = colorful;
this->spiral = spiral;
} }
// Update the Scanner Pattern // Update the Scanner Pattern
@ -174,17 +270,25 @@ void NeoPatterns::ScannerUpdate()
} }
for (int i = 0; i < numPixels(); i++) for (int i = 0; i < numPixels(); i++)
{ {
int finalpos;
if (spiral) {
finalpos = numToSpiralPos(i);
}
else
{
finalpos = i;
}
if (i == Index) // Scan Pixel to the right if (i == Index) // Scan Pixel to the right
{ {
setPixelColor(i, Color1); setPixelColor(finalpos, Color1);
} }
else if (i == TotalSteps - Index) // Scan Pixel to the left else if (i == TotalSteps - Index) // Scan Pixel to the left
{ {
setPixelColor(i, Color1); setPixelColor(finalpos, Color1);
} }
else // Fading tail else // Fading tail
{ {
setPixelColor(i, DimColor(getPixelColor(i))); setPixelColor(finalpos, DimColor(getPixelColor(finalpos)));
} }
} }
show(); show();
@ -192,6 +296,67 @@ void NeoPatterns::ScannerUpdate()
} }
// Initialize for a SCANNNER_RANDOM
void NeoPatterns::ScannerRandom(uint32_t color1, uint8_t interval, bool colorful, bool spiral)
{
ActivePattern = SCANNER_RANDOM;
Interval = interval;
TotalSteps = (numPixels() - 1) * 2;
Color1 = color1;
Index = numPixels() / 2;
wPos = 0;
this->colorful = colorful;
this->spiral = spiral;
}
// Update the Scanner Pattern
void NeoPatterns::ScannerRandomUpdate()
{
if (colorful) {
Color1 = Wheel(wPos);
if (wPos >= 255) {
wPos = 0;
}
else {
wPos++;
}
}
if (random(0, 1000) < 5)
{
Reverse();
}
for (int i = 0; i < numPixels(); i++)
{
int finalpos;
if (spiral) {
finalpos = numToSpiralPos(i);
}
else
{
finalpos = i;
}
if (i == Index) // Scan Pixel to the right
{
setPixelColor(finalpos, Color1);
}
else if (i == TotalSteps - Index) // Scan Pixel to the left
{
setPixelColor(finalpos, Color1);
}
else // Fading tail
{
setPixelColor(finalpos, DimColor(getPixelColor(finalpos)));
}
}
show();
Increment();
}
void NeoPatterns::Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir) void NeoPatterns::Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir)
{ {
ActivePattern = FADE; ActivePattern = FADE;
@ -223,11 +388,548 @@ void NeoPatterns::RandomFade(uint8_t interval ){
TotalSteps = 255; TotalSteps = 255;
Index = 0; Index = 0;
} }
void NeoPatterns::RandomFadeUpdate() { void NeoPatterns::RandomFadeUpdate() {
ColorSet(Wheel(Index)); ColorSet(Wheel(Index));
Increment(); Increment();
} }
void NeoPatterns::RandomFadeSingle(uint8_t interval, uint8_t speed) {
ActivePattern = RANDOM_FADE_SINGLE;
Interval = interval;
TotalSteps = 255;
Index = 0;
WheelSpeed = speed;
RandomBuffer();
}
void NeoPatterns::RandomFadeSingleUpdate() {
for (int i = 0; i < numPixels(); i++) {
pixelR_buffer[i] += random(0, random(0, WheelSpeed + 1) + 1); //use buffer red channel for color wheel
setPixelColor(i, Wheel(pixelR_buffer[i]));
}
show();
Increment();
}
void NeoPatterns::RandomBuffer()
{
for (int i = 0; i < numPixels(); i++) {
uint32_t c = Wheel(random(0, 256));
pixelR_buffer[i] = (uint8_t)(c >> 16);
pixelG_buffer[i] = (uint8_t)(c >> 8);
pixelB_buffer[i] = (uint8_t)c;
}
}
void NeoPatterns::Random()
{
None(); // Stop all other effects
ActivePattern = RANDOM;
for (int i = 0; i < numPixels(); i++) {
setPixelColor(i, Wheel(random(0, 256)));
}
show();
}
/********** FIRE ********/
void NeoPatterns::Fire(uint8_t interval)
{
ActivePattern = FIRE;
Interval = interval;
TotalSteps = 255;
Index = 0;
}
void NeoPatterns::FireUpdate()
{
int r = 255;
int g = r - 140;
int b = 0;
for (int i = 0; i < numPixels(); i++) {
int flicker = random(0, 70);
int r1 = r - flicker;
int g1 = g - flicker;
int b1 = b - flicker;
if (g1 < 0) g1 = 0;
if (r1 < 0) r1 = 0;
if (b1 < 0) b1 = 0;
setPixelColor(i, r1, g1, b1);
}
show();
Interval = random(50, 150);
}
/********** FIRE END ****/
/********** FIREWORKS ********/
// Manchmal noch instabil und lässt den ESP abstürzen. Müsste mal mit Serial mal gedebuggt werden...
void NeoPatterns::Fireworks()
{
ActivePattern = FIREWORKS;
Interval = 20; // 12ms ist so ziemlich die untere Grenze, durch die Berechnugen und Speicherzugriffe.
// Calculate "good" explosion speed
// 60 LED Strip: 50, 100, 0.985 is a good choice (with Interval = 25)
// Start 0, with maximum speed (100), the rocket should explode at the LATEST at position 50 (of 60). (Which is 10 pixels before maximum)
// rocket_speed_max should not be >100, as this would skip LEDs.
explosion_speed = 0.25f;
rocket_speed_max = 100;
rocket_slowdown = pow(explosion_speed, (float)((float)1/(float)(2*numPixels()-10))); // 0.985f;
rocket_speed_min = int(log(explosion_speed)/((numPixels()/4) * log(rocket_slowdown)))+1;
if (rocket_speed_min/100 < explosion_speed)
{
rocket_speed_min += explosion_speed*100;
}
// OnDebugOutput(String(rocket_slowdown, 6));
// OnDebugOutput(String(rocket_speed_min));
}
/** Debug Output
haus/RGB5m/strip/DEBUG Start: 0: Speed: 0.960 Pos: 0
haus/RGB5m/strip/DEBUG Explode 0: Speed 0.249 Pos: 149 Iterations: 282 // Die Anzahl der Iterationen ist gut berechnet (0.96 -- 282 von 290 max). Nur wurde der Slowdown nicht mit einberechnet
*/
void NeoPatterns::explosion(int pos, float rocketspeed)
{
uint8_t hue = random(0, 256);
uint8_t explosionsize = random(EXPLOSION_SIZE_MIN, EXPLOSION_SIZE_MAX + 1);
for (int i = 0; i < explosionsize; i++)
{
particle_arr.push_back(Particle(this, pos + i - 3, (float)(((float)random(-50, 50)) / 100) + rocketspeed / 2, hue, 1, 0.99f));
}
}
void NeoPatterns::FireworksUpdate()
{
if (millis() > currentRocketMillis + rocketTimeout)
{
// Start a new rocket
if (random(0, 2) == 0)
{
Rocket tmpr = Rocket(this, 0, (float)(((float)random(rocket_speed_min, rocket_speed_max)) / 100), rocket_slowdown);
// OnDebugOutput(String("Start: ") + String(tmpr.id()) + String(": Speed: ") + String(tmpr.rocketspeed(), 3) + String(" Pos: 0"));
rocket_arr.push_back(tmpr);
}
else
{
Rocket tmpr = Rocket(this, numPixels(), -(float)(((float)random(rocket_speed_min, rocket_speed_max)) / 100), rocket_slowdown);
// OnDebugOutput(String("Start: ") + String(tmpr.id()) + String(": Speed: ") + String(tmpr.rocketspeed(), 3) + String(" Pos: ") + String(numPixels()));
rocket_arr.push_back(tmpr);
}
rocketTimeout = random(ROCKET_LAUNCH_TIMEOUT_MIN, ROCKET_LAUNCH_TIMEOUT_MAX+1);
currentRocketMillis = millis();
}
clear();
// Iterate through all particles
for (std::vector<Particle>::iterator it = particle_arr.begin(); it != particle_arr.end(); ++it)
{
Particle & p = *it;
p.update();
// Erase Particles which are too dark
if (p.brightness() < 0.1)
{
it = particle_arr.erase(it); // After erasing, it is now pointing the next element.
--it;
}
}
// Iterate through all rockets
for (std::vector<Rocket>::iterator it = rocket_arr.begin(); it != rocket_arr.end(); ++it)
{
Rocket & r = *it;
// Create Trail on old position
particle_arr.push_back(Particle(this, r.pos(), 0, 20, 0.3));
r.update();
if ((r.rocketspeed() <= explosion_speed) && (r.rocketspeed() >= -explosion_speed))
{
// OnDebugOutput(String("Explode ") + String(r.id()) + String(": Speed ") + String(r.rocketspeed(), 3) + String(" Pos: ") + String(r.pos()) + String(" Iterations: ") + String(r.iteration()));
explosion( r.pos(), r.rocketspeed());
it = rocket_arr.erase(it); // After erasing, it is now pointing the next element.
--it;
}
}
show();
}
/********** FIREWORKS END ****/
/********** DROP ********/
void NeoPatterns::Drop(uint8_t interval)
{
ActivePattern = DROP;
Interval = interval;
TotalSteps = 255;
Index = 0;
for (int i = 0; i < 10; i++) {
drop[i] = 0;
dropBrightness[i] = 0;
}
clear();
}
void NeoPatterns::DropUpdate()
{
// Generate new drop?
if (random(0, 100) > 50)
{
Serial.println("Will generate a new drop");
// New drop
// Find first free drop and discard, if no free place
for (int i = 0; i < MAX_DROPS; i++) {
if (drop[i] == 0)
{
Serial.print("Found a free position for a drop: ");
// Random position
drop[i] = random(0, numPixels());
dropBrightness[i] = 255; // Initial brightness
Serial.print(i);
Serial.print(" pos ");
Serial.println(drop[i]);
break;
}
}
}
// Work for all other drops
for (int i = 0; i < MAX_DROPS; i++) {
if (drop[i] > 0)
{
Serial.print("Updating drop on ");
Serial.println(i);
// Current drop
// dropBrightness[i] = dropBrightness[i]>>1;
dropBrightness[i] *= 0.9;
if (dropBrightness[i] <= 8)
{
// Brightness to zero for all neighbours
dropBrightness[i] = 0;
}
setPixelColor(drop[i], 0, 0, dropBrightness[i]); // TODO: Other colors?
// Set neighbouring drops
int nBright;
for (int neighbour = 1; neighbour < 5; neighbour++) {
//nBright = dropBrightness[i] >> neighbour;
nBright = dropBrightness[i];
for (int j = 1; j < neighbour; j++)
{
nBright *= 0.6;
}
Serial.print(neighbour);
Serial.print(": ");
Serial.println(nBright);
if ((drop[i] - neighbour) >= 0)
{
setPixelColor(drop[i] - neighbour, 0, 0, nBright);
}
if ((drop[i] + neighbour) <= numPixels())
{
setPixelColor(drop[i] + neighbour, 0, 0, nBright);
}
}
if (dropBrightness[i] <= 8)
{
// Disable this drop
drop[i] = 0;
}
}
}
show();
}
/********** DROP END ****/
/********** RINGS ********/
void NeoPatterns::Rings(uint8_t interval)
{
ActivePattern = RINGS;
Interval = interval;
TotalSteps = 255;
Index = 0;
for (int i = 0; i < 10; i++) {
ring[i] = 0;
ringBrightness[i] = 0;
ringDistance[i] = 0;
}
clear();
}
void NeoPatterns::RingsUpdate()
{
// Generate new ring?
if (random(0, 100) > 50)
{
Serial.println("Will generate a new ring");
// New ring
// Find first free ring and discard, if no free place
for (int i = 0; i < MAX_RINGS; i++) {
if (ring[i] == 0)
{
Serial.print("Found a free position for a ring: ");
// Random position
ring[i] = random(0, numPixels());
ringBrightness[i] = 255 << 1; // Initial brightness
ringDistance[i] = 0;
Serial.print(i);
Serial.print(" pos ");
Serial.println(ring[i]);
break;
}
}
}
// Work for all other rings
for (int i = 0; i < MAX_RINGS; i++) {
if (ring[i] > 0)
{
Serial.print("Updating ring on ");
Serial.println(i);
// Center of the ring
ringBrightness[i] *= 0.9;
if (ringBrightness[i] <= 8)
{
// Brightness to zero for the middle
ringBrightness[i] = 0;
}
setPixelColor(ring[i], 0, 0, ringBrightness[i]); // TODO: Other colors?
// Set neighbouring rings
int nBright;
// Maximum distance for rings is 10
// General idea: Start with the middle (max brightness), continue left and right with brightness * 0.9
// For each step, dim current brightness for ALL pixels simply by 0.7, below thershold -> off
ringDistance[i]++;
// Neighbours: Color of middle, dimmed by 0.9 to max distance
for (int neighbour = 1; neighbour < ringDistance[i]; neighbour++)
{
Serial.print("Neighbour ");
Serial.print(neighbour);
nBright = 255;
if (ringBrightness[i] == 0)
{
nBright = 0;
}
else
{
for (int j = 0; j < ringDistance[i] - neighbour; j++)
{
nBright *= 0.8;
}
nBright *= (1 - 0.1 * ringDistance[i]);
}
if (nBright < 10) {
nBright = 0;
}
Serial.print(" brightness: ");
Serial.println(nBright);
if ((ring[i] - neighbour) >= 0)
{
setPixelColor(ring[i] - neighbour, 0, 0, nBright);
}
if ((ring[i] + neighbour) <= numPixels())
{
setPixelColor(ring[i] + neighbour, 0, 0, nBright);
}
}
if (ringBrightness[i] <= 8)
{
// Disable this ring
ring[i] = 0;
}
}
}
show();
}
/********** RINGS END ****/
void NeoPatterns::Smooth(uint8_t wheelSpeed, uint8_t smoothing, uint8_t strength, uint8_t interval) {
ActivePattern = SMOOTH;
Interval = interval;
Index = 0;
WheelSpeed = wheelSpeed;
Smoothing = smoothing;
Strength = strength;
movingPoint_x = 3;
movingPoint_y = 3;
// Clear buffer (from previous or different effects)
for (int i = 0; i < numPixels(); i++) {
pixelR_buffer[i] = 0;
pixelG_buffer[i] = 0;
pixelB_buffer[i] = 0;
}
}
void NeoPatterns::SmoothUpdate() {
uint32_t c = Wheel(wPos);
wPosSlow += WheelSpeed;
wPos = (wPos + (wPosSlow / 10) ) % 255;
wPosSlow = wPosSlow % 16;
uint8_t r = (uint8_t)(c >> 16);
uint8_t g = (uint8_t)(c >> 8);
uint8_t b = (uint8_t)c;
movingPoint_x = movingPoint_x + 8 + random(-random(0, 1 + 1), random(0, 1 + 1) + 1);
movingPoint_y = movingPoint_y + 8 + random(-random(0, 1 + 1), random(0, 1 + 1) + 1);
if (movingPoint_x < 8) {
movingPoint_x = 8 - movingPoint_x;
} else if (movingPoint_x >= 16) {
movingPoint_x = 22 - movingPoint_x;
} else {
movingPoint_x -= 8;
}
if (movingPoint_y < 8) {
movingPoint_y = 8 - movingPoint_y;
} else if (movingPoint_y >= 16) {
movingPoint_y = 22 - movingPoint_y;
} else {
movingPoint_y -= 8;
}
uint8_t startx = movingPoint_x;
uint8_t starty = movingPoint_y;
for (int i = 0; i < Strength; i++) {
movingPoint_x = startx + 8 + random(-random(0, 2 + 1), random(0, 2 + 1) + 1);
movingPoint_y = starty + 8 + random(-random(0, 2 + 1), random(0, 2 + 1) + 1);
if (movingPoint_x < 8) {
movingPoint_x = 8 - movingPoint_x;
} else if (movingPoint_x >= 16) {
movingPoint_x = 22 - movingPoint_x;
} else {
movingPoint_x -= 8;
}
if (movingPoint_y < 8) {
movingPoint_y = 8 - movingPoint_y;
} else if (movingPoint_y >= 16) {
movingPoint_y = 22 - movingPoint_y;
} else {
movingPoint_y -= 8;
}
if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] < r) {
pixelR[xyToPos(movingPoint_x, movingPoint_y)]++;
} else if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] > r) {
pixelR[xyToPos(movingPoint_x, movingPoint_y)]--;
}
if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] < g) {
pixelG[xyToPos(movingPoint_x, movingPoint_y)]++;
} else if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] > g) {
pixelG[xyToPos(movingPoint_x, movingPoint_y)]--;
}
if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] < b) {
pixelB[xyToPos(movingPoint_x, movingPoint_y)]++;
} else if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] > b) {
pixelB[xyToPos(movingPoint_x, movingPoint_y)]--;
}
}
movingPoint_x = startx;
movingPoint_y = starty;
for (int i = 0; i < numPixels(); i++) {
pixelR_buffer[i] = (Smoothing / 100.0) * pixelR[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelR, i, 0, 0);
pixelG_buffer[i] = (Smoothing / 100.0) * pixelG[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelG, i, 0, 0);
pixelB_buffer[i] = (Smoothing / 100.0) * pixelB[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelB, i, 0, 0);
}
for (int i = 0; i < numPixels(); i++) {
pixelR[i] = pixelR_buffer[i];
pixelG[i] = pixelG_buffer[i];
pixelB[i] = pixelB_buffer[i];
setPixelColor(i, pixelR[i], pixelG[i], pixelB[i]);
}
show();
}
// Based upon https://github.com/johncarl81/neopixelplasma
void NeoPatterns::Plasma(float phase, float phaseIncrement, float colorStretch, uint8_t interval)
{
ActivePattern = PLASMA;
Interval = interval;
PlasmaPhase = phase;
PlasmaPhaseIncrement = phaseIncrement;
PlasmaColorStretch = colorStretch;
}
void NeoPatterns::PlasmaUpdate()
{
PlasmaPhase += PlasmaPhaseIncrement;
int edge = (int)sqrt(numPixels());
// The two points move along Lissajious curves, see: http://en.wikipedia.org/wiki/Lissajous_curve
// The sin() function returns values in the range of -1.0..1.0, so scale these to our desired ranges.
// The phase value is multiplied by various constants; I chose these semi-randomly, to produce a nice motion.
Point p1 = { (sin(PlasmaPhase * 1.000) + 1.0) * (edge / 2), (sin(PlasmaPhase * 1.310) + 1.0) * (edge / 2) };
Point p2 = { (sin(PlasmaPhase * 1.770) + 1.0) * (edge / 2), (sin(PlasmaPhase * 2.865) + 1.0) * (edge / 2) };
Point p3 = { (sin(PlasmaPhase * 0.250) + 1.0) * (edge / 2), (sin(PlasmaPhase * 0.750) + 1.0) * (edge / 2)};
byte row, col;
// For each row...
for ( row = 0; row < edge; row++ ) {
float row_f = float(row); // Optimization: Keep a floating point value of the row number, instead of recasting it repeatedly.
// For each column...
for ( col = 0; col < edge; col++ ) {
float col_f = float(col); // Optimization.
// Calculate the distance between this LED, and p1.
Point dist1 = { col_f - p1.x, row_f - p1.y }; // The vector from p1 to this LED.
float distance1 = sqrt( dist1.x * dist1.x + dist1.y * dist1.y );
// Calculate the distance between this LED, and p2.
Point dist2 = { col_f - p2.x, row_f - p2.y }; // The vector from p2 to this LED.
float distance2 = sqrt( dist2.x * dist2.x + dist2.y * dist2.y );
// Calculate the distance between this LED, and p3.
Point dist3 = { col_f - p3.x, row_f - p3.y }; // The vector from p3 to this LED.
float distance3 = sqrt( dist3.x * dist3.x + dist3.y * dist3.y );
// Warp the distance with a sin() function. As the distance value increases, the LEDs will get light,dark,light,dark,etc...
// You can use a cos() for slightly different shading, or experiment with other functions. Go crazy!
float color_1 = distance1; // range: 0.0...1.0
float color_2 = distance2;
float color_3 = distance3;
float color_4 = (sin( distance1 * distance2 * PlasmaColorStretch )) + 2.0 * 0.5;
// Square the color_f value to weight it towards 0. The image will be darker and have higher contrast.
color_1 *= color_1 * color_4;
color_2 *= color_2 * color_4;
color_3 *= color_3 * color_4;
color_4 *= color_4;
// Scale the color up to 0..7 . Max brightness is 7.
//strip.setPixelColor(col + (edge * row), strip.Color(color_4, 0, 0) );
setPixelColor(col + (edge * row), Color(color_1, color_2, color_3));
}
}
show();
}
/****************** Helper functions ******************/
void NeoPatterns::SetColor1(uint32_t color) { void NeoPatterns::SetColor1(uint32_t color) {
Color1 = color; Color1 = color;
} }
@ -253,6 +955,13 @@ void NeoPatterns::ColorSet(uint32_t color)
show(); show();
} }
void NeoPatterns::ColorSetParameters(String parameters)
{
None();
ActivePattern = FILL;
ColorSet(parseColor(parameters));
}
// Returns the Red component of a 32-bit color // Returns the Red component of a 32-bit color
uint8_t NeoPatterns::Red(uint32_t color) uint8_t NeoPatterns::Red(uint32_t color)
{ {
@ -272,7 +981,7 @@ uint8_t NeoPatterns::Blue(uint32_t color)
} }
// Input a value 0 to 255 to get a color value. // Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r. // The colors are a transition r - g - b - back to r.
uint32_t NeoPatterns::Wheel(byte WheelPos) uint32_t NeoPatterns::Wheel(byte WheelPos)
{ {
WheelPos = 255 - WheelPos; WheelPos = 255 - WheelPos;
@ -291,3 +1000,116 @@ uint32_t NeoPatterns::Wheel(byte WheelPos)
return Color(WheelPos * 3, 255 - WheelPos * 3, 0); return Color(WheelPos * 3, 255 - WheelPos * 3, 0);
} }
} }
uint32_t NeoPatterns::Wheel(byte WheelPos, float brightness) {
WheelPos = 255 - WheelPos;
// OnDebugOutput(String("Value ") + String (WheelPos * 3) + String(" converted by brightness ") + String(brightness, 6) + String(" to ") + String(int((float)(WheelPos * 3) * brightness)));
if (WheelPos < 85) {
return Color(int((float)(255 - WheelPos * 3) * brightness), 0, int((float)(WheelPos * 3) * brightness));
}
if (WheelPos < 170) {
WheelPos -= 85;
return Color(0, int((float)(WheelPos * 3) * brightness), int((float)(255 - WheelPos * 3) * brightness));
}
WheelPos -= 170;
return Color(int((float)(WheelPos * 3) * brightness), int((float)(255 - WheelPos * 3) * brightness), 0);
}
// Convert x y pixel position to matrix position
uint8_t NeoPatterns::xyToPos(int x, int y) {
if (y % 2 == 0) {
return (y * 8 + x);
} else {
return (y * 8 + (7 - x));
}
}
//convert pixel number to actual 8x8 matrix position
uint8_t NeoPatterns::numToPos(int num) {
int x = num % 8;
int y = num / 8;
return xyToPos(x, y);
}
// Convert pixel number to actual 8x8 matrix position in a spiral
uint8_t NeoPatterns::numToSpiralPos(int num) {
int edge = (int)sqrt(numPixels());
int findx = edge - 1; // 7
int findy = 0;
int stepsize = edge - 1; // initial value (0..7)
int stepnumber = 0; // each "step" should be used twice
int count = -1;
int dir = 1; // direction: 0 = incX, 1=incY, 2=decX, 3=decY
if (num < edge) {
return num; // trivial
}
for (int i = edge; i <= num; i++)
{
count++;
if (count == stepsize) {
count = 0;
// Change direction
dir++;
stepnumber++;
if (stepnumber == 2) {
stepsize -= 1;
stepnumber = 0;
}
if (dir == 4) {
dir = 0;
}
}
switch (dir) {
case 0:
findx++;
break;
case 1:
findy++;
break;
case 2:
findx--;
break;
case 3:
findy--;
break;
}
}
return xyToPos(findx, findy);
}
uint8_t NeoPatterns::getAverage(uint8_t array[], uint8_t i, int x, int y)
{
// TODO: This currently works only with 8x8 (64 pixel)!
uint16_t sum = 0;
uint8_t count = 0;
if (i >= 8) { //up
sum += array[i - 8];
count++;
}
if (i < (64 - 8)) { //down
sum += array[i + 8];
count++;
}
if (i >= 1) { //left
sum += array[i - 1];
count++;
}
if (i < (64 - 1)) { //right
sum += array[i + 1];
count++;
}
return sum / count;
}
uint32_t NeoPatterns::parseColor(String value) {
if (value.charAt(0) == '#') { //solid fill
String color = value.substring(1);
int number = (int) strtol( &color[0], NULL, 16);
// Split them up into r, g, b values
int r = number >> 16;
int g = number >> 8 & 0xFF;
int b = number & 0xFF;
return Color(r, g, b);
}
return 0;
}

View File

@ -1,59 +1,178 @@
#ifndef NEOPATTERNS_H
#define NEOPATTERNS_H
#include <Adafruit_NeoPixel.h> #include <Adafruit_NeoPixel.h>
#include <math.h>
#include <vector>
#include <algorithm> // std::remove
#include "Rocket.h"
#include "Particle.h"
// class Rocket;
// class Particle;
// Ideas
// Drop (Middle high, than to both sides diming out)
#define MAX_DROPS 10
#define MAX_RINGS 1
// Two or more chasers
// Chaser changing direction randomly
// Pattern types supported: // Pattern types supported:
enum pattern { NONE, RAINBOW_CYCLE, THEATER_CHASE, COLOR_WIPE, SCANNER, FADE, RANDOM_FADE }; enum pattern { NONE, RAINBOW_CYCLE, THEATER_CHASE, COLOR_WIPE, SCANNER, FADE, RANDOM_FADE, SMOOTH, RANDOM_FADE_SINGLE, PLASMA, FILL, RANDOM, FIRE, FIREWORKS, DROP, RINGS, SCANNER_RANDOM, BVB };
// Patern directions supported: // Patern directions supported:
enum direction { FORWARD, REVERSE }; enum direction { FORWARD, REVERSE };
class NeoPatterns : public Adafruit_NeoPixel class NeoPatterns : public Adafruit_NeoPixel
{ {
public: public:
NeoPatterns(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)()); NeoPatterns(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)(), void (*callbackDebug)(String));
void Update(); void Update();
void Reverse(); void Reverse();
void None(); void None(uint8_t interval = 40);
void RainbowCycle(uint8_t interval, direction dir = FORWARD); void RainbowCycle(uint8_t interval, direction dir = FORWARD);
void RainbowCycleUpdate(); void RainbowCycleUpdate();
void TheaterChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir = FORWARD); void TheaterChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir = FORWARD);
void TheaterChaseUpdate(); void TheaterChaseUpdate();
void BVBChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir = FORWARD);
void BVBChaseUpdate();
void ColorWipe(uint32_t color, uint8_t interval, direction dir = FORWARD); void ColorWipe(uint32_t color, uint8_t interval, direction dir = FORWARD);
void ColorWipeUpdate(); void ColorWipeUpdate();
void Scanner(uint32_t color1, uint8_t interval = 40,bool colorful = false); void Scanner(uint32_t color1 = 16711680, uint8_t interval = 40, bool colorful = false, bool spiral = false);
void ScannerUpdate(); void ScannerUpdate();
void ScannerRandom(uint32_t color1 = 16711680, uint8_t interval = 40, bool colorful = false, bool spiral = false);
void ScannerRandomUpdate();
void Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir = FORWARD); void Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir = FORWARD);
void FadeUpdate(); void FadeUpdate();
void RandomFade(uint8_t interval = 100); void RandomFade(uint8_t interval = 100);
void RandomFadeUpdate(); void RandomFadeUpdate();
void RandomFadeSingle(uint8_t interval = 100, uint8_t speed = 5);
void RandomFadeSingleUpdate();
void Fire(uint8_t interval = 100);
void FireUpdate();
void Fireworks();
void FireworksUpdate();
void explosion(int pos, float rocketspeed);
void Drop(uint8_t interval = 100);
void DropUpdate();
void Rings(uint8_t interval = 100);
void RingsUpdate();
void RandomBuffer();
void Random();
void Smooth(uint8_t wheelSpeed = 16, uint8_t smoothing = 80, uint8_t strength = 50, uint8_t interval = 40);
void SmoothUpdate();
void Plasma(float phase = 0, float phaseIncrement = 0.03, float colorStretch = 0.3, uint8_t interval = 60); // 0.08 and 0.11
void PlasmaUpdate();
void SetColor1(uint32_t color); void SetColor1(uint32_t color);
void SetColor2(uint32_t color); void SetColor2(uint32_t color);
//Utilities //Utilities
void ColorSet(uint32_t color); void ColorSet(uint32_t color);
void ColorSetParameters(String parameters);
uint8_t Red(uint32_t color); uint8_t Red(uint32_t color);
uint8_t Green(uint32_t color); uint8_t Green(uint32_t color);
uint8_t Blue(uint32_t color); uint8_t Blue(uint32_t color);
uint32_t Wheel(byte WheelPos); uint32_t Wheel(byte WheelPos);
uint32_t Wheel(byte WheelPos, float brightness);
uint8_t numToSpiralPos(int num);
uint8_t xyToPos(int x, int y);
uint8_t numToPos(int num);
uint8_t getAverage(uint8_t array[], uint8_t i, int x, int y);
uint32_t parseColor(String value);
#define EXPLOSION_SIZE_MIN 5
#define EXPLOSION_SIZE_MAX 10
// 60 LED Strip: 50, 100, 0.985 is a good choice (with Interval = 25)
// Start 0, with maximum speed (100), the rocket should explode at the LATEST at position 50 (of 60). (Which is 10 pixels before maximum)
// #define EXPLOSION_SPEED 0.25f
// #define ROCKET_SPEED_MIN 50
// ROCKET_SPEED_MAX should not be >100, as this would skip LEDs.
// #define ROCKET_SPEED_MAX 100
// #define ROCKET_SLOWDOWN 0.985f
#define ROCKET_LAUNCH_TIMEOUT_MIN 1000
#define ROCKET_LAUNCH_TIMEOUT_MAX 3000
uint32_t maxRocketID = 0;
uint32_t maxParticleID = 0;
uint32_t currentRocketMillis = 0;
uint32_t rocketTimeout;
float explosion_speed = 0.25f;
uint8_t rocket_speed_min = 50;
uint8_t rocket_speed_max = 100;
double rocket_slowdown = 0.985f;
private: private:
std::vector <Rocket> rocket_arr;
std::vector <Particle> particle_arr;
// Member Variables: // Member Variables:
pattern ActivePattern; // which pattern is running pattern ActivePattern; // which pattern is running
pattern SavedPattern;
direction Direction; // direction to run the pattern direction Direction; // direction to run the pattern
direction SavedDirection;
unsigned long Interval; // milliseconds between updates unsigned long Interval; // milliseconds between updates
unsigned long SavedInterval;
unsigned long lastUpdate; // last update of position unsigned long lastUpdate; // last update of position
uint32_t Color1, Color2; // What colors are in use uint32_t Color1, Color2; // What colors are in use
uint32_t SavedColor1;
uint16_t TotalSteps; // total number of steps in the pattern uint16_t TotalSteps; // total number of steps in the pattern
uint16_t SavedTotalSteps;
uint16_t Index; // current step within the pattern uint16_t Index; // current step within the pattern
uint16_t SavedIndex;
uint8_t Every; // Turn every "Every" pixel in Color1/Color2
byte wPos; byte wPos;
bool colorful; bool colorful;
bool spiral;
uint8_t wPosSlow;
uint8_t WheelSpeed;
uint8_t Smoothing;
uint8_t Strength;
uint8_t movingPoint_x;
uint8_t movingPoint_y;
uint8_t *pixelR;
uint8_t *pixelG;
uint8_t *pixelB;
uint8_t *pixelR_buffer;
uint8_t *pixelG_buffer;
uint8_t *pixelB_buffer;
// Drops
uint8_t *drop;
uint8_t *dropBrightness;
// Rings
uint8_t *ring;
uint8_t *ringBrightness;
uint8_t *ringDistance;
uint8_t FontChar;
float PlasmaPhase;
float SavedPlasmaPhase;
float PlasmaPhaseIncrement;
float SavedPlasmaPhaseIncrement;
float PlasmaColorStretch;
float SavedPlasmaColorStretch;
uint32_t DimColor(uint32_t color); uint32_t DimColor(uint32_t color);
void Increment(); void Increment();
void (*OnComplete)(); // Callback on completion of pattern void (*OnComplete)(); // Callback on completion of pattern
void (*OnDebugOutput)(String); // Callback on completion of pattern
// Convenient 2D point structure
struct Point {
float x;
float y;
}; };
};
#endif

View File

@ -0,0 +1,48 @@
#include "Particle.h"
#include "NeoPatterns.h"
Particle::Particle() // Particle::Particle(NeoPatterns * parent)
{
_pos = 0;
// _id = parent->maxParticleID;
// parent->maxParticleID++;
} //Default constructor.
Particle::Particle(NeoPatterns * parent, float pos, float speed, uint8_t hue, float brightness, float decay )
{
_id = parent->maxParticleID;
parent->maxParticleID++;
_pos = pos;
_speed = speed;
_hue = hue;
_brightness = brightness;
_decay = decay;
_parent = parent;
}
bool Particle::operator==(const Particle &p) const {
return (p._id == _id);
}
void Particle::update()
{
_pos += _speed;
_speed *= 0.96;
_brightness *= _decay;
if (_pos > _parent->numPixels()) {
_pos = 0;
}
_parent->setPixelColor((int)_pos, _parent->Wheel(_hue, _brightness));
}
float Particle::brightness()
{
return _brightness;
}

View File

@ -0,0 +1,25 @@
#ifndef PARTICLE_H
#define PARTICLE_H
#include <Adafruit_NeoPixel.h>
class NeoPatterns; // Forward declaration
class Particle
{
public:
Particle(NeoPatterns * parent, float pos, float speed, uint8_t hue, float brightness, float decay = 0.95);
Particle();
bool operator==(const Particle &p) const;
void update();
int _id;
float brightness();
private:
float _pos;
float _speed;
float _brightness;
float _decay;
uint8_t _hue;
NeoPatterns * _parent;
};
#endif

View File

@ -0,0 +1,62 @@
#include "Rocket.h"
#include "NeoPatterns.h"
Rocket::Rocket()
{
// _id = maxRocketID;
// maxRocketID++;
_pos = 0;
_speed = 1;
_lastbright = 1;
}
Rocket::Rocket(NeoPatterns *parent, float pos, float rocketspeed, float rocket_slowdown)
{
_parent = parent;
_id = _parent->maxRocketID;
_parent->maxRocketID++;
_rocket_slowdown = rocket_slowdown;
_iteration = 0;
Serial.print("Rocket: ");
Serial.print(_id);
Serial.print(" ");
Serial.print(pos);
Serial.print(" ");
Serial.println(rocketspeed);
_pos = pos;
_speed = rocketspeed;
}
bool Rocket::operator==(const Rocket &r) const {
return (r._id == _id);
}
void Rocket::update()
{
_iteration++;
_pos += _speed;
_speed *= _rocket_slowdown; // 0.97
_parent->setPixelColor(_pos, _parent->Color(50, 32, 0));
}
// Schweif mit Sparkle
int Rocket::pos()
{
return _pos;
}
float Rocket::rocketspeed()
{
return _speed;
}
int Rocket::id()
{
return _id;
}
uint16_t Rocket::iteration()
{
return _iteration;
}

29
esp-wemos-schild/Rocket.h Normal file
View File

@ -0,0 +1,29 @@
#ifndef ROCKET_H
#define ROCKET_H
#include <Adafruit_NeoPixel.h>
class NeoPatterns; // Forward declaration
class Rocket
{
public:
int _id;
Rocket(NeoPatterns *parent, float pos, float rocketspeed, float rocket_slowdown);
Rocket();
bool operator==(const Rocket &r) const;
void update();
int pos();
float rocketspeed();
int id();
uint16_t iteration();
private:
float _pos;
float _speed;
int _lastbright;
float _rocket_slowdown;
uint16_t _iteration;
NeoPatterns * _parent;
};
#endif

View File

@ -4,20 +4,25 @@
#include <ArduinoOTA.h> #include <ArduinoOTA.h>
#include <Adafruit_NeoPixel.h> #include <Adafruit_NeoPixel.h>
#include "NeoPatterns.h" #include "NeoPatterns.h"
#include <math.h>
#define PIN D1 #define PIN D1
#define NUMPIXELS 80 #define NUMPIXELS 30
#define FW_NAME "esp-schild" #define FW_NAME "esp-schild"
#define FW_VERSION "1.0.1" #define FW_VERSION "1.0.3"
HomieNode homieNode("strip", "strip");
void StripComplete() { void StripComplete() {
return; return;
} }
NeoPatterns pixels = NeoPatterns(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800,&StripComplete); void DebugOutput(String value) {
homieNode.setProperty("DEBUG").send(value);
}
HomieNode stripNode("strip", "strip"); NeoPatterns strip = NeoPatterns(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800, &StripComplete, &DebugOutput);
bool onSetColor(const HomieRange& range, const String& value) { bool onSetColor(const HomieRange& range, const String& value) {
if (!range.isRange || range.index < 0 || range.index > 1) { if (!range.isRange || range.index < 0 || range.index > 1) {
@ -25,29 +30,29 @@ bool onSetColor(const HomieRange& range, const String& value){
} }
switch (range.index) { switch (range.index) {
case 0: case 0:
pixels.SetColor1(value.toInt()); strip.SetColor1(value.toInt());
break; break;
case 1: case 1:
pixels.SetColor2(value.toInt()); strip.SetColor2(value.toInt());
break; break;
} }
stripNode.setProperty("color_" + String(range.index)).send(value); homieNode.setProperty("color_" + String(range.index)).send(value);
} }
bool onSetPixel(const HomieRange& range, const String& value) { bool onSetPixel(const HomieRange& range, const String& value) {
if (!range.isRange) { if (!range.isRange) {
pixels.None(); strip.None();
pixels.ColorSet(value.toInt()); strip.ColorSet(value.toInt());
stripNode.setProperty("pixel").send(value); homieNode.setProperty("pixel").send(value);
return true; return true;
} }
if (range.index < 0 || range.index > pixels.numPixels()-1) { if (range.index < 0 || range.index > strip.numPixels() - 1) {
return false; return false;
} }
pixels.None(); strip.None();
pixels.setPixelColor(range.index, value.toInt()); strip.setPixelColor(range.index, value.toInt());
pixels.show(); strip.show();
stripNode.setProperty("pixel_" + String(range.index)).send(value); homieNode.setProperty("pixel_" + String(range.index)).send(value);
} }
bool onSetBrightness(const HomieRange& range, const String& value) { bool onSetBrightness(const HomieRange& range, const String& value) {
@ -55,58 +60,115 @@ bool onSetBrightness(const HomieRange& range, const String& value){
if (brightness < 0 || brightness > 255) { if (brightness < 0 || brightness > 255) {
return false; return false;
} }
pixels.setBrightness(brightness); strip.setBrightness(brightness);
pixels.show(); strip.show();
stripNode.setProperty("brightness").send(value); homieNode.setProperty("brightness").send(value);
} }
bool onSetEffect(const HomieRange& range, const String& value) { bool onSetEffect(const HomieRange& range, const String& value) {
String effect = value; String effect = value;
effect.toLowerCase(); effect.toLowerCase();
if (effect == "scanner") { if (effect == "scanner") {
pixels.Scanner(pixels.Color(255, 0, 0)); strip.Scanner(strip.Color(255, 0, 0));
} }
else if (effect == "randomscanner") { else if (effect == "randomscanner") {
pixels.Scanner(pixels.Color(255, 0, 0), 40, true); strip.Scanner(strip.Color(255, 0, 0), 4, true);
}
else if (effect == "larsonspiral") {
strip.Scanner(strip.Color(255, 0, 0), 40, true, true);
} }
else if (effect == "rainbowcycle") { else if (effect == "rainbowcycle") {
pixels.RainbowCycle(50); strip.RainbowCycle(50);
} }
else if(effect == "theaterchase") { else if (effect == "theaterchase" || effect == "chase") {
pixels.TheaterChase(pixels.Color(255, 0, 0), pixels.Color(0,0,255), 100); strip.TheaterChase(strip.Color(255, 0, 0), strip.Color(0, 0, 255), 50);
}
else if (effect == "bvb") {
strip.BVBChase(strip.Color(255, 185, 0), strip.Color(0, 0, 0), 50);
} }
else if (effect == "fade") { else if (effect == "fade") {
pixels.Fade(pixels.Color(255, 0, 0), pixels.Color(0,0,255), 200, 100); strip.Fade(strip.Color(255, 0, 0), strip.Color(0, 0, 255), 200, 100);
} }
else if (effect == "randomfade") { else if (effect == "randomfade") {
pixels.RandomFade(); strip.RandomFade();
}
else if (effect == "random") {
strip.Random();
}
else if (effect == "smooth") { //example: smooth|[wheelspeed]|[smoothing]|[strength] wheelspeed=1-255, smoothing=0-100, strength=1-255
strip.Smooth(16, 80, 50, 40);
}
else if (effect == "plasma") {
strip.Plasma();
}
else if (effect == "fire") {
strip.Fire();
}
else if (effect == "fireworks") {
strip.Fireworks();
}
else if (effect == "drop") {
strip.Drop();
}
else if (effect == "scannerrandom") {
strip.ScannerRandom(strip.Color(255, 0, 0), 4, true);
}
else if (effect == "ring") {
strip.Rings();
} else {
// Test whether command with parameters was sent
int sep = value.indexOf("|");
String command = value.substring(0, sep);
String parameters = value.substring(sep + 1);
if (command.equals("fill")) {
strip.ColorSetParameters(parameters);
}
else if (command.equals("randomfade")) {
int sepparam = parameters.indexOf("|");
int p1 = parameters.substring(0, sepparam).toInt();
if (p1 <= 0) {
p1 = 5;
}
strip.RandomFadeSingle(p1);
}
else if (command.equals("randomscanner")) {
int sepparam = parameters.indexOf("|");
int p1 = parameters.substring(0, sepparam).toInt();
if (p1 <= 0) {
p1 = 5;
}
homieNode.setProperty("effect").send(String(p1));
strip.Scanner(strip.Color(255, 0, 0), p1, true);
} }
else { else {
pixels.None(); strip.None();
digitalWrite(PIN, LOW); // D4 ist auch gleichzeitig der LED-Pin, daher abschalten... (TODO: TEST: FIXME)
} }
stripNode.setProperty("effect").send(value); }
homieNode.setProperty("effect").send(value);
} }
bool onSetClear(const HomieRange& range, const String& value) { bool onSetClear(const HomieRange& range, const String& value) {
pixels.None(); strip.None();
pixels.clear(); strip.clear();
pixels.show(); strip.show();
stripNode.setProperty("clear").send(value); homieNode.setProperty("clear").send(value);
} }
bool onSetLength(const HomieRange& range, const String& value) { bool onSetLength(const HomieRange& range, const String& value) {
pixels.None(); strip.None();
pixels.clear(); strip.clear();
pixels.show(); strip.show();
int newLength = value.toInt(); int newLength = value.toInt();
if (newLength > 0) { if (newLength > 0) {
pixels.updateLength(newLength); strip.updateLength(newLength);
} }
stripNode.setProperty("length").send(value); homieNode.setProperty("length").send(value);
} }
void loopHandler() { void loopHandler() {
pixels.Update(); strip.Update();
} }
void setup() { void setup() {
@ -116,31 +178,32 @@ void setup() {
Homie_setBrand(FW_NAME); Homie_setBrand(FW_NAME);
Homie.setLoopFunction(loopHandler); Homie.setLoopFunction(loopHandler);
stripNode.advertiseRange("pixel", 0, NUMPIXELS-1).settable(onSetPixel); homieNode.advertiseRange("pixel", 0, NUMPIXELS - 1).settable(onSetPixel);
stripNode.advertiseRange("color", 0, 1).settable(onSetColor); homieNode.advertiseRange("color", 0, 1).settable(onSetColor);
stripNode.advertise("brightness").settable(onSetBrightness); homieNode.advertise("brightness").settable(onSetBrightness);
stripNode.advertise("effect").settable(onSetEffect); homieNode.advertise("effect").settable(onSetEffect);
stripNode.advertise("clear").settable(onSetClear); homieNode.advertise("clear").settable(onSetClear);
stripNode.advertise("length").settable(onSetLength); homieNode.advertise("length").settable(onSetLength);
pixels.begin(); strip.begin();
pixels.clear(); strip.clear();
pixels.setBrightness(64); strip.setBrightness(30);
pixels.show(); strip.show();
Homie.setup(); Homie.setup();
ArduinoOTA.setHostname(Homie.getConfiguration().deviceId); ArduinoOTA.setHostname(Homie.getConfiguration().deviceId);
// ArduinoOTA.setPassword((const char *)"ctdo2342"); ArduinoOTA.begin();
ArduinoOTA.onStart([]() { ArduinoOTA.onStart([]() {
pixels.clear(); strip.clear();
}); });
ArduinoOTA.onEnd([]() { ArduinoOTA.onEnd([]() {
pixels.clear(); strip.clear();
}); });
ArduinoOTA.onProgress([](unsigned int progress, unsigned int total) { ArduinoOTA.onProgress([](unsigned int progress, unsigned int total) {
pixels.setPixelColor(progress / (total / NUMPIXELS), pixels.Color(100, 0, 0)); strip.setPixelColor(progress / (total / NUMPIXELS), strip.Color(100, 0, 0));
pixels.show(); strip.show();
}); });
ArduinoOTA.begin(); ArduinoOTA.begin();
} }