esp-videoswitcher/NeoPatterns.cpp

918 lines
22 KiB
C++

#include "NeoPatterns.h"
NeoPatterns::NeoPatterns(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)()) :
Adafruit_NeoPixel(pixels, pin, type)
{
OnComplete = callback;
//Allocate a zero initialized block of memory big enough to hold "pixels" uint8_t.
pixelR = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelG = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelB = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelR_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelG_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelB_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
setupboxs();
}
void NeoPatterns::Update() {
if ((millis() - lastUpdate) > Interval) // time to update
{
lastUpdate = millis();
switch (ActivePattern)
{
case RAINBOW_CYCLE:
RainbowCycleUpdate();
break;
case THEATER_CHASE:
TheaterChaseUpdate();
break;
case COLOR_WIPE:
ColorWipeUpdate();
break;
case SCANNER:
ScannerUpdate();
break;
case FADE:
FadeUpdate();
break;
case RANDOM_FADE:
RandomFadeUpdate();
break;
case RANDOM_FADE_SINGLE:
RandomFadeSingleUpdate();
break;
case SMOOTH:
SmoothUpdate();
break;
case PLASMA:
PlasmaUpdate();
break;
case RADAR:
RadarUpdate();
break;
case FILL:
break;
case RANDOM:
break;
case SHOWINPUT:
ShowInputUpdate();
break;
case NONE:
break;
default:
break;
}
} else {
delay(1);
}
}
void NeoPatterns::Increment()
{
if (Direction == FORWARD)
{
Index++;
if (Index >= TotalSteps)
{
Index = 0;
if (OnComplete != NULL)
{
OnComplete(); // call the completion callback
}
}
}
else // Direction == REVERSE
{
--Index;
if (Index <= 0)
{
Index = TotalSteps - 1;
if (OnComplete != NULL)
{
OnComplete(); // call the completion callback
}
}
}
}
void NeoPatterns::Reverse() {
if (Direction == FORWARD)
{
Direction = REVERSE;
Index = TotalSteps - 1;
}
else
{
Direction = FORWARD;
Index = 0;
}
}
void NeoPatterns::Stop(uint8_t interval) {
Interval = interval;
ActivePattern = NONE;
}
void NeoPatterns::None(uint8_t interval) {
Interval = interval;
if (ActivePattern != NONE) {
clear();
show();
}
ActivePattern = NONE;
}
/****************** Effects ******************/
void NeoPatterns::RainbowCycle(uint8_t interval, direction dir) {
ActivePattern = RAINBOW_CYCLE;
Interval = interval;
TotalSteps = 255;
Index = 0;
Direction = dir;
}
void NeoPatterns::RainbowCycleUpdate()
{
for (int i = 0; i < numPixels(); i++)
{
setPixelColor(i, Wheel(((i * 256 / numPixels()) + Index) & 255));
}
show();
Increment();
}
void NeoPatterns::TheaterChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir) {
ActivePattern = THEATER_CHASE;
Interval = interval;
TotalSteps = numPixels();
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
void NeoPatterns::TheaterChaseUpdate() {
for (int i = 0; i < numPixels(); i++)
{
if ((i + Index) % 3 == 0)
{
setPixelColor(i, Color1);
}
else
{
setPixelColor(i, Color2);
}
}
show();
Increment();
}
void NeoPatterns::ColorWipe(uint32_t color, uint8_t interval, direction dir)
{
ActivePattern = COLOR_WIPE;
Interval = interval;
TotalSteps = numPixels();
Color1 = color;
Index = 0;
Direction = dir;
}
// Update the Color Wipe Pattern
void NeoPatterns::ColorWipeUpdate()
{
setPixelColor(Index, Color1);
show();
Increment();
}
// Initialize for a SCANNNER
void NeoPatterns::Scanner(uint32_t color1, uint8_t interval, bool colorful, bool spiral)
{
ActivePattern = SCANNER;
Interval = interval;
TotalSteps = (numPixels() - 1) * 2;
Color1 = color1;
Index = 0;
wPos = 0;
this->colorful = colorful;
this->spiral = spiral;
}
// Update the Scanner Pattern
void NeoPatterns::ScannerUpdate()
{
if (colorful) {
Color1 = Wheel(wPos);
if (wPos >= 255) {
wPos = 0;
}
else {
wPos++;
}
}
for (int i = 0; i < numPixels(); i++)
{
int finalpos;
if (spiral) {
finalpos = numToSpiralPos(i);
}
else
{
finalpos = i;
}
if (i == Index) // Scan Pixel to the right
{
setPixelColor(finalpos, Color1);
}
else if (i == TotalSteps - Index) // Scan Pixel to the left
{
setPixelColor(finalpos, Color1);
}
else // Fading tail
{
setPixelColor(finalpos, DimColor(getPixelColor(finalpos)));
}
}
show();
Increment();
}
void NeoPatterns::Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir)
{
ActivePattern = FADE;
Interval = interval;
TotalSteps = steps;
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
// Update the Fade Pattern
void NeoPatterns::FadeUpdate()
{
// Calculate linear interpolation between Color1 and Color2
// Optimise order of operations to minimize truncation error
uint8_t red = ((Red(Color1) * (TotalSteps - Index)) + (Red(Color2) * Index)) / TotalSteps;
uint8_t green = ((Green(Color1) * (TotalSteps - Index)) + (Green(Color2) * Index)) / TotalSteps;
uint8_t blue = ((Blue(Color1) * (TotalSteps - Index)) + (Blue(Color2) * Index)) / TotalSteps;
ColorSet(Color(red, green, blue));
show();
Increment();
}
void NeoPatterns::RandomFade(uint8_t interval ) {
ActivePattern = RANDOM_FADE;
Interval = interval;
TotalSteps = 255;
Index = 0;
}
void NeoPatterns::RandomFadeUpdate() {
ColorSet(Wheel(Index));
Increment();
}
void NeoPatterns::RandomFadeSingle(uint8_t interval, uint8_t speed) {
ActivePattern = RANDOM_FADE_SINGLE;
Interval = interval;
TotalSteps = 255;
Index = 0;
WheelSpeed = speed;
RandomBuffer();
}
void NeoPatterns::RandomFadeSingleUpdate() {
for (int i = 0; i < numPixels(); i++) {
pixelR_buffer[i] += random(0, random(0, WheelSpeed + 1) + 1); //use buffer red channel for color wheel
setPixelColor(i, Wheel(pixelR_buffer[i]));
}
show();
Increment();
}
void NeoPatterns::RandomBuffer()
{
for (int i = 0; i < numPixels(); i++) {
uint32_t c = Wheel(random(0, 256));
pixelR_buffer[i] = (uint8_t)(c >> 16);
pixelG_buffer[i] = (uint8_t)(c >> 8);
pixelB_buffer[i] = (uint8_t)c;
}
}
void NeoPatterns::Random()
{
None(); // Stop all other effects
ActivePattern = RANDOM;
for (int i = 0; i < numPixels(); i++) {
setPixelColor(i, Wheel(random(0, 256)));
}
show();
}
void NeoPatterns::Smooth(uint8_t wheelSpeed, uint8_t smoothing, uint8_t strength, uint8_t interval) {
ActivePattern = SMOOTH;
Interval = interval;
Index = 0;
WheelSpeed = wheelSpeed;
Smoothing = smoothing;
Strength = strength;
movingPoint_x = 3;
movingPoint_y = 3;
// Clear buffer (from previous or different effects)
for (int i = 0; i < numPixels(); i++) {
pixelR_buffer[i] = 0;
pixelG_buffer[i] = 0;
pixelB_buffer[i] = 0;
}
}
void NeoPatterns::SmoothUpdate() {
uint32_t c = Wheel(wPos);
wPosSlow += WheelSpeed;
wPos = (wPos + (wPosSlow / 10) ) % 255;
wPosSlow = wPosSlow % 16;
uint8_t r = (uint8_t)(c >> 16);
uint8_t g = (uint8_t)(c >> 8);
uint8_t b = (uint8_t)c;
movingPoint_x = movingPoint_x + 8 + random(-random(0, 1 + 1), random(0, 1 + 1) + 1);
movingPoint_y = movingPoint_y + 8 + random(-random(0, 1 + 1), random(0, 1 + 1) + 1);
if (movingPoint_x < 8) {
movingPoint_x = 8 - movingPoint_x;
} else if (movingPoint_x >= 16) {
movingPoint_x = 22 - movingPoint_x;
} else {
movingPoint_x -= 8;
}
if (movingPoint_y < 8) {
movingPoint_y = 8 - movingPoint_y;
} else if (movingPoint_y >= 16) {
movingPoint_y = 22 - movingPoint_y;
} else {
movingPoint_y -= 8;
}
uint8_t startx = movingPoint_x;
uint8_t starty = movingPoint_y;
for (int i = 0; i < Strength; i++) {
movingPoint_x = startx + 8 + random(-random(0, 2 + 1), random(0, 2 + 1) + 1);
movingPoint_y = starty + 8 + random(-random(0, 2 + 1), random(0, 2 + 1) + 1);
if (movingPoint_x < 8) {
movingPoint_x = 8 - movingPoint_x;
} else if (movingPoint_x >= 16) {
movingPoint_x = 22 - movingPoint_x;
} else {
movingPoint_x -= 8;
}
if (movingPoint_y < 8) {
movingPoint_y = 8 - movingPoint_y;
} else if (movingPoint_y >= 16) {
movingPoint_y = 22 - movingPoint_y;
} else {
movingPoint_y -= 8;
}
if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] < r) {
pixelR[xyToPos(movingPoint_x, movingPoint_y)]++;
} else if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] > r) {
pixelR[xyToPos(movingPoint_x, movingPoint_y)]--;
}
if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] < g) {
pixelG[xyToPos(movingPoint_x, movingPoint_y)]++;
} else if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] > g) {
pixelG[xyToPos(movingPoint_x, movingPoint_y)]--;
}
if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] < b) {
pixelB[xyToPos(movingPoint_x, movingPoint_y)]++;
} else if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] > b) {
pixelB[xyToPos(movingPoint_x, movingPoint_y)]--;
}
}
movingPoint_x = startx;
movingPoint_y = starty;
for (int i = 0; i < numPixels(); i++) {
pixelR_buffer[i] = (Smoothing / 100.0) * pixelR[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelR, i, 0, 0);
pixelG_buffer[i] = (Smoothing / 100.0) * pixelG[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelG, i, 0, 0);
pixelB_buffer[i] = (Smoothing / 100.0) * pixelB[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelB, i, 0, 0);
}
for (int i = 0; i < numPixels(); i++) {
pixelR[i] = pixelR_buffer[i];
pixelG[i] = pixelG_buffer[i];
pixelB[i] = pixelB_buffer[i];
setPixelColor(i, pixelR[i], pixelG[i], pixelB[i]);
}
show();
}
// Based upon https://github.com/johncarl81/neopixelplasma
void NeoPatterns::Plasma(float phase, float phaseIncrement, float colorStretch, uint8_t interval)
{
ActivePattern = PLASMA;
Interval = interval;
PlasmaPhase = phase;
PlasmaPhaseIncrement = phaseIncrement;
PlasmaColorStretch = colorStretch;
}
void NeoPatterns::PlasmaUpdate()
{
PlasmaPhase += PlasmaPhaseIncrement;
int edge = (int)sqrt(numPixels());
// The two points move along Lissajious curves, see: http://en.wikipedia.org/wiki/Lissajous_curve
// The sin() function returns values in the range of -1.0..1.0, so scale these to our desired ranges.
// The phase value is multiplied by various constants; I chose these semi-randomly, to produce a nice motion.
Point p1 = { (sin(PlasmaPhase * 1.000) + 1.0) * (edge / 2), (sin(PlasmaPhase * 1.310) + 1.0) * (edge / 2) };
Point p2 = { (sin(PlasmaPhase * 1.770) + 1.0) * (edge / 2), (sin(PlasmaPhase * 2.865) + 1.0) * (edge / 2) };
Point p3 = { (sin(PlasmaPhase * 0.250) + 1.0) * (edge / 2), (sin(PlasmaPhase * 0.750) + 1.0) * (edge / 2)};
byte row, col;
// For each row...
for ( row = 0; row < edge; row++ ) {
float row_f = float(row); // Optimization: Keep a floating point value of the row number, instead of recasting it repeatedly.
// For each column...
for ( col = 0; col < edge; col++ ) {
float col_f = float(col); // Optimization.
// Calculate the distance between this LED, and p1.
Point dist1 = { col_f - p1.x, row_f - p1.y }; // The vector from p1 to this LED.
float distance1 = sqrt( dist1.x * dist1.x + dist1.y * dist1.y );
// Calculate the distance between this LED, and p2.
Point dist2 = { col_f - p2.x, row_f - p2.y }; // The vector from p2 to this LED.
float distance2 = sqrt( dist2.x * dist2.x + dist2.y * dist2.y );
// Calculate the distance between this LED, and p3.
Point dist3 = { col_f - p3.x, row_f - p3.y }; // The vector from p3 to this LED.
float distance3 = sqrt( dist3.x * dist3.x + dist3.y * dist3.y );
// Warp the distance with a sin() function. As the distance value increases, the LEDs will get light,dark,light,dark,etc...
// You can use a cos() for slightly different shading, or experiment with other functions. Go crazy!
float color_1 = distance1; // range: 0.0...1.0
float color_2 = distance2;
float color_3 = distance3;
float color_4 = (sin( distance1 * distance2 * PlasmaColorStretch )) + 2.0 * 0.5;
// Square the color_f value to weight it towards 0. The image will be darker and have higher contrast.
color_1 *= color_1 * color_4;
color_2 *= color_2 * color_4;
color_3 *= color_3 * color_4;
color_4 *= color_4;
// Scale the color up to 0..7 . Max brightness is 7.
//strip.setPixelColor(col + (edge * row), strip.Color(color_4, 0, 0) );
setPixelColor(xyToPos(row, col), Color(color_1, color_2, color_3));
}
}
show();
}
void NeoPatterns::Radar(float radarspeed,float radarthickness, uint8_t interval)
{
ActivePattern = RADAR;
Radarspeed = radarspeed;
Interval = interval; //interval time in ms
Radarposition=0;
Radarthickness=radarthickness;
Radarfadelength=8;
Radardotposition=10;
Radardotbrightness=0;
Radardotfadespeed=10;
}
void NeoPatterns::RadarUpdate()
{
Radarposition += Radarspeed;
while (Radarposition>=20){
Radarposition-=20;
}
while (Radarposition<=-20){
Radarposition+=20;
}
for (int i=0;i<20;i++){
uint32_t c= Color(0,0,0);
float angulardistance;
if (Radarspeed>0){
angulardistance=Radarposition-i;
if (angulardistance<0){
angulardistance+=20;
}
}
if (angulardistance<=Radarfadelength){
uint8_t _brightness=(Radarfadelength-angulardistance)*255/Radarfadelength;
c= Color (int( pow( (_brightness/255.0),2)*255.0), _brightness ,int(pow( (_brightness/255.0),2)*150.0) );
}
colorCircleSegment(i, c);
}
if (abs(Radarposition-Radardotposition)<=1){
Radardotbrightness=255;
}
if (Radardotbrightness>10){
if (Radardotbrightness>=Radardotfadespeed){
Radardotbrightness-=Radardotfadespeed;
}else{
Radardotbrightness=0;
}
colorCircleSegment(Radardotposition, Color (Radardotbrightness,0,0));
}else{
if (random(100)==0){
Radardotposition=random(0,20); //set new position
}
}
show();
}
/**** Input ****/
void NeoPatterns::ShowInput() {
if (ActivePattern != SHOWINPUT) {
clear();
colorBox(currentinput, Color(255, 255, 255));
show();
}
ActivePattern = SHOWINPUT;
}
void NeoPatterns::ShowInputUpdate() {
clear();
colorBox(currentinput, Color(255, 255, 255));
show();
}
// setCurrentInput
void NeoPatterns::setCurrentInput(uint8_t input) {
currentinput = input;
}
/********/
/****************** Helper functions ******************/
void NeoPatterns::SetColor1(uint32_t color) {
Color1 = color;
}
void NeoPatterns::SetColor2(uint32_t color) {
Color2 = color;
}
// Calculate 50% dimmed version of a color (used by ScannerUpdate)
uint32_t NeoPatterns::DimColor(uint32_t color)
{
// Shift R, G and B components one bit to the right
uint32_t dimColor = Color(Red(color) >> 1, Green(color) >> 1, Blue(color) >> 1);
return dimColor;
}
// Set all pixels to a color (synchronously)
void NeoPatterns::ColorSet(uint32_t color)
{
for (int i = 0; i < numPixels(); i++)
{
setPixelColor(i, color);
}
show();
}
void NeoPatterns::colorBox(uint8_t boxid, uint32_t c){ //color a box
// for (int i=boxid*3;i<(boxid+1)*3;i++) {
// setPixelColor(i, c);
// }
Serial.print("Coloring Box ");
Serial.println(boxid);
setPixelColor(boxs[boxid].left, c);
setPixelColor(boxs[boxid].middle, c);
setPixelColor(boxs[boxid].right, c);
show();
}
void NeoPatterns::setupboxs() {
boxs[1].left = 55;
boxs[1].middle = 56;
boxs[1].right = 57;
boxs[2].left = 52;
boxs[2].middle = 53;
boxs[2].right = 54;
boxs[3].left = 49;
boxs[3].middle = 50;
boxs[3].right = 51;
boxs[4].left = 46;
boxs[4].middle = 47;
boxs[4].right = 48;
boxs[5].left = 43;
boxs[5].middle = 44;
boxs[5].right = 45;
boxs[6].left = 40;
boxs[6].middle = 41;
boxs[6].right = 42;
boxs[7].left = 33;
boxs[7].middle = 38;
boxs[7].right = 38;
boxs[8].left = 32;
boxs[8].middle = 37;
boxs[8].right = 37;
boxs[9].left = 31;
boxs[9].middle = 36;
boxs[9].right = 36;
boxs[10].left = 30;
boxs[10].middle = 35;
boxs[10].right = 35;
boxs[11].left = 29;
boxs[11].middle = 28;
boxs[11].right = 27;
boxs[12].left = 26;
boxs[12].middle = 25;
boxs[12].right = 24;
boxs[13].left = 23;
boxs[13].middle = 22;
boxs[13].right = 21;
boxs[14].left = 20;
boxs[14].middle = 19;
boxs[14].right = 18;
boxs[15].left = 17;
boxs[15].middle = 16;
boxs[15].right = 15;
boxs[16].left = 14;
boxs[16].middle = 13;
boxs[16].right = 12;
boxs[17].left = 11;
boxs[17].middle = 10;
boxs[17].right = 9;
boxs[18].left = 8;
boxs[18].middle = 7;
boxs[18].right = 6;
boxs[19].left = 5;
boxs[19].middle = 4;
boxs[19].right = 3;
boxs[20].left = 2;
boxs[20].middle = 1;
boxs[20].right = 0;
boxs[21].left = 69;
boxs[21].middle = 68;
boxs[21].right = 67;
boxs[22].left = 66;
boxs[22].middle = 65;
boxs[22].right = 64;
boxs[23].left = 63;
boxs[23].middle = 62;
boxs[23].right = 61;
boxs[24].left = 60;
boxs[24].middle = 59;
boxs[24].right = 58;
// Die unterste Zeile ohne Konsole
boxs[0].left = 34;
boxs[0].middle = 39;
boxs[0].right = 39;
}
void NeoPatterns::colorCircleSegment(uint8_t wheelid, uint32_t c){ //color a wheel segment
for (int i=0;i<6;i++) {
setPixelColor(boxcircle[wheelid][i], c);
}
show();
}
void NeoPatterns::ColorSetParameters(String parameters)
{
None();
ActivePattern = FILL;
ColorSet(parseColor(parameters));
}
// Returns the Red component of a 32-bit color
uint8_t NeoPatterns::Red(uint32_t color)
{
return (color >> 16) & 0xFF;
}
// Returns the Green component of a 32-bit color
uint8_t NeoPatterns::Green(uint32_t color)
{
return (color >> 8) & 0xFF;
}
// Returns the Blue component of a 32-bit color
uint8_t NeoPatterns::Blue(uint32_t color)
{
return color & 0xFF;
}
// Input a value 0 to 255 to get a color value.
// The colors are a transition r - g - b - back to r.
uint32_t NeoPatterns::Wheel(byte WheelPos)
{
WheelPos = 255 - WheelPos;
if (WheelPos < 85)
{
return Color(255 - WheelPos * 3, 0, WheelPos * 3);
}
else if (WheelPos < 170)
{
WheelPos -= 85;
return Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
else
{
WheelPos -= 170;
return Color(WheelPos * 3, 255 - WheelPos * 3, 0);
}
}
// Convert x y pixel position to matrix position
uint8_t NeoPatterns::xyToPos(int x, int y) {
if (y % 2 == 0) {
return (y * (int)sqrt(numPixels()) + x);
} else {
return (y * (int)sqrt(numPixels()) + (((int)sqrt(numPixels())-1) - x));
}
}
//convert pixel number to actual 8x8 matrix position
uint8_t NeoPatterns::numToPos(int num) {
int x = num % (int)sqrt(numPixels());
int y = num / (int)sqrt(numPixels());
return xyToPos(x, y);
}
// Convert pixel number to actual 8x8 matrix position in a spiral
uint8_t NeoPatterns::numToSpiralPos(int num) {
int edge = (int)sqrt(numPixels());
int findx = edge - 1; // 7
int findy = 0;
int stepsize = edge - 1; // initial value (0..7)
int stepnumber = 0; // each "step" should be used twice
int count = -1;
int dir = 1; // direction: 0 = incX, 1=incY, 2=decX, 3=decY
if (num < edge) {
return num; // trivial
}
for (int i = edge; i <= num; i++)
{
count++;
if (count == stepsize) {
count = 0;
// Change direction
dir++;
stepnumber++;
if (stepnumber == 2) {
stepsize -= 1;
stepnumber = 0;
}
if (dir == 4) {
dir = 0;
}
}
switch (dir) {
case 0:
findx++;
break;
case 1:
findy++;
break;
case 2:
findx--;
break;
case 3:
findy--;
break;
}
}
return xyToPos(findx, findy);
}
uint8_t NeoPatterns::getAverage(uint8_t array[], uint8_t i, int x, int y)
{
// TODO: This currently works only with 8x8 (64 pixel)!
uint16_t sum = 0;
uint8_t count = 0;
if (i >= 8) { //up
sum += array[i - 8];
count++;
}
if (i < (64 - 8)) { //down
sum += array[i + 8];
count++;
}
if (i >= 1) { //left
sum += array[i - 1];
count++;
}
if (i < (64 - 1)) { //right
sum += array[i + 1];
count++;
}
return sum / count;
}
uint32_t NeoPatterns::parseColor(String value) {
if (value.charAt(0) == '#') { //solid fill
String color = value.substring(1);
int number = (int) strtol( &color[0], NULL, 16);
// Split them up into r, g, b values
int r = number >> 16;
int g = number >> 8 & 0xFF;
int b = number & 0xFF;
return Color(r, g, b);
}
return 0;
}
void NeoPatterns::Equalizer(uint8_t eqvalues[]){ //display equalizer (not used as "effect")
//eqvalues[] of size 8, each contains a value from 0 to 8 (inclusive)
setEqBar(0,eqvalues[0]);
setEqBar(1,eqvalues[1]);
setEqBar(2,eqvalues[2]);
setEqBar(3,eqvalues[3]);
setEqBar(4,eqvalues[4]);
setEqBar(5,eqvalues[5]);
setEqBar(6,eqvalues[6]);
setEqBar(7,eqvalues[7]);
setEqBar(8,eqvalues[7]);
setEqBar(17,eqvalues[0]);
setEqBar(16,eqvalues[1]);
setEqBar(15,eqvalues[2]);
setEqBar(14,eqvalues[3]);
setEqBar(13,eqvalues[4]);
setEqBar(12,eqvalues[5]);
setEqBar(11,eqvalues[6]);
setEqBar(10,eqvalues[7]);
setEqBar(9,eqvalues[7]);
show();
}
//helper function
void NeoPatterns::setEqBar(uint8_t barid,uint8_t pvalue){ //barid is the bar from ledEq array (vertical),pvalue is the amplitude
for (uint8_t i=0;i<8;i++){
uint8_t ledId=ledEq[barid][i];
uint32_t backgroundColor=Color(0,0,0);
if (i<pvalue){
setPixelColor(ledId,Wheel((i*32+100)%256));
}else{
setPixelColor(ledId,backgroundColor);
}
}
}