Strip hinzugefügt

This commit is contained in:
starcalc 2017-11-28 22:03:38 +01:00
parent 5b6443fd9c
commit 54fbb46f25
3 changed files with 939 additions and 1 deletions

654
NeoPatterns.cpp Normal file
View File

@ -0,0 +1,654 @@
#include "NeoPatterns.h"
NeoPatterns::NeoPatterns(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)()) :
Adafruit_NeoPixel(pixels, pin, type)
{
OnComplete = callback;
//Allocate a zero initialized block of memory big enough to hold "pixels" uint8_t.
pixelR = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelG = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelB = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelR_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelG_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
pixelB_buffer = ( uint8_t* ) calloc( pixels, sizeof( uint8_t ) );
}
void NeoPatterns::Update() {
if ((millis() - lastUpdate) > Interval) // time to update
{
lastUpdate = millis();
switch (ActivePattern)
{
case RAINBOW_CYCLE:
RainbowCycleUpdate();
break;
case THEATER_CHASE:
TheaterChaseUpdate();
break;
case COLOR_WIPE:
ColorWipeUpdate();
break;
case SCANNER:
ScannerUpdate();
break;
case FADE:
FadeUpdate();
break;
case RANDOM_FADE:
RandomFadeUpdate();
break;
case RANDOM_FADE_SINGLE:
RandomFadeSingleUpdate();
break;
case SMOOTH:
SmoothUpdate();
break;
case PLASMA:
PlasmaUpdate();
break;
case FILL:
break;
case RANDOM:
break;
case NONE:
break;
default:
break;
}
} else {
delay(1);
}
}
void NeoPatterns::Increment()
{
if (Direction == FORWARD)
{
Index++;
if (Index >= TotalSteps)
{
Index = 0;
if (OnComplete != NULL)
{
OnComplete(); // call the completion callback
}
}
}
else // Direction == REVERSE
{
--Index;
if (Index <= 0)
{
Index = TotalSteps - 1;
if (OnComplete != NULL)
{
OnComplete(); // call the completion callback
}
}
}
}
void NeoPatterns::Reverse() {
if (Direction == FORWARD)
{
Direction = REVERSE;
Index = TotalSteps - 1;
}
else
{
Direction = FORWARD;
Index = 0;
}
}
void NeoPatterns::Stop(uint8_t interval) {
Interval = interval;
ActivePattern = NONE;
}
void NeoPatterns::None(uint8_t interval) {
Interval = interval;
if (ActivePattern != NONE) {
clear();
show();
}
ActivePattern = NONE;
}
/****************** Effects ******************/
void NeoPatterns::RainbowCycle(uint8_t interval, direction dir) {
ActivePattern = RAINBOW_CYCLE;
Interval = interval;
TotalSteps = 255;
Index = 0;
Direction = dir;
}
void NeoPatterns::RainbowCycleUpdate()
{
for (int i = 0; i < numPixels(); i++)
{
setPixelColor(i, Wheel(((i * 256 / numPixels()) + Index) & 255));
}
show();
Increment();
}
void NeoPatterns::TheaterChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir) {
ActivePattern = THEATER_CHASE;
Interval = interval;
TotalSteps = numPixels();
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
void NeoPatterns::TheaterChaseUpdate() {
for (int i = 0; i < numPixels(); i++)
{
if ((i + Index) % 3 == 0)
{
setPixelColor(i, Color1);
}
else
{
setPixelColor(i, Color2);
}
}
show();
Increment();
}
void NeoPatterns::ColorWipe(uint32_t color, uint8_t interval, direction dir)
{
ActivePattern = COLOR_WIPE;
Interval = interval;
TotalSteps = numPixels();
Color1 = color;
Index = 0;
Direction = dir;
}
// Update the Color Wipe Pattern
void NeoPatterns::ColorWipeUpdate()
{
setPixelColor(Index, Color1);
show();
Increment();
}
// Initialize for a SCANNNER
void NeoPatterns::Scanner(uint32_t color1, uint8_t interval, bool colorful, bool spiral)
{
ActivePattern = SCANNER;
Interval = interval;
TotalSteps = (numPixels() - 1) * 2;
Color1 = color1;
Index = 0;
wPos = 0;
this->colorful = colorful;
this->spiral = spiral;
}
// Update the Scanner Pattern
void NeoPatterns::ScannerUpdate()
{
if (colorful) {
Color1 = Wheel(wPos);
if (wPos >= 255) {
wPos = 0;
}
else {
wPos++;
}
}
for (int i = 0; i < numPixels(); i++)
{
int finalpos;
if (spiral) {
finalpos = numToSpiralPos(i);
}
else
{
finalpos = i;
}
if (i == Index) // Scan Pixel to the right
{
setPixelColor(finalpos, Color1);
}
else if (i == TotalSteps - Index) // Scan Pixel to the left
{
setPixelColor(finalpos, Color1);
}
else // Fading tail
{
setPixelColor(finalpos, DimColor(getPixelColor(finalpos)));
}
}
show();
Increment();
}
void NeoPatterns::Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir)
{
ActivePattern = FADE;
Interval = interval;
TotalSteps = steps;
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
// Update the Fade Pattern
void NeoPatterns::FadeUpdate()
{
// Calculate linear interpolation between Color1 and Color2
// Optimise order of operations to minimize truncation error
uint8_t red = ((Red(Color1) * (TotalSteps - Index)) + (Red(Color2) * Index)) / TotalSteps;
uint8_t green = ((Green(Color1) * (TotalSteps - Index)) + (Green(Color2) * Index)) / TotalSteps;
uint8_t blue = ((Blue(Color1) * (TotalSteps - Index)) + (Blue(Color2) * Index)) / TotalSteps;
ColorSet(Color(red, green, blue));
show();
Increment();
}
void NeoPatterns::RandomFade(uint8_t interval ) {
ActivePattern = RANDOM_FADE;
Interval = interval;
TotalSteps = 255;
Index = 0;
}
void NeoPatterns::RandomFadeUpdate() {
ColorSet(Wheel(Index));
Increment();
}
void NeoPatterns::RandomFadeSingle(uint8_t interval, uint8_t speed) {
ActivePattern = RANDOM_FADE_SINGLE;
Interval = interval;
TotalSteps = 255;
Index = 0;
WheelSpeed = speed;
RandomBuffer();
}
void NeoPatterns::RandomFadeSingleUpdate() {
for (int i = 0; i < numPixels(); i++) {
pixelR_buffer[i] += random(0, random(0, WheelSpeed + 1) + 1); //use buffer red channel for color wheel
setPixelColor(i, Wheel(pixelR_buffer[i]));
}
show();
Increment();
}
void NeoPatterns::RandomBuffer()
{
for (int i = 0; i < numPixels(); i++) {
uint32_t c = Wheel(random(0, 256));
pixelR_buffer[i] = (uint8_t)(c >> 16);
pixelG_buffer[i] = (uint8_t)(c >> 8);
pixelB_buffer[i] = (uint8_t)c;
}
}
void NeoPatterns::Random()
{
None(); // Stop all other effects
ActivePattern = RANDOM;
for (int i = 0; i < numPixels(); i++) {
setPixelColor(i, Wheel(random(0, 256)));
}
show();
}
void NeoPatterns::Smooth(uint8_t wheelSpeed, uint8_t smoothing, uint8_t strength, uint8_t interval) {
ActivePattern = SMOOTH;
Interval = interval;
Index = 0;
WheelSpeed = wheelSpeed;
Smoothing = smoothing;
Strength = strength;
movingPoint_x = 3;
movingPoint_y = 3;
// Clear buffer (from previous or different effects)
for (int i = 0; i < numPixels(); i++) {
pixelR_buffer[i] = 0;
pixelG_buffer[i] = 0;
pixelB_buffer[i] = 0;
}
}
void NeoPatterns::SmoothUpdate() {
uint32_t c = Wheel(wPos);
wPosSlow += WheelSpeed;
wPos = (wPos + (wPosSlow / 10) ) % 255;
wPosSlow = wPosSlow % 16;
uint8_t r = (uint8_t)(c >> 16);
uint8_t g = (uint8_t)(c >> 8);
uint8_t b = (uint8_t)c;
movingPoint_x = movingPoint_x + 8 + random(-random(0, 1 + 1), random(0, 1 + 1) + 1);
movingPoint_y = movingPoint_y + 8 + random(-random(0, 1 + 1), random(0, 1 + 1) + 1);
if (movingPoint_x < 8) {
movingPoint_x = 8 - movingPoint_x;
} else if (movingPoint_x >= 16) {
movingPoint_x = 22 - movingPoint_x;
} else {
movingPoint_x -= 8;
}
if (movingPoint_y < 8) {
movingPoint_y = 8 - movingPoint_y;
} else if (movingPoint_y >= 16) {
movingPoint_y = 22 - movingPoint_y;
} else {
movingPoint_y -= 8;
}
uint8_t startx = movingPoint_x;
uint8_t starty = movingPoint_y;
for (int i = 0; i < Strength; i++) {
movingPoint_x = startx + 8 + random(-random(0, 2 + 1), random(0, 2 + 1) + 1);
movingPoint_y = starty + 8 + random(-random(0, 2 + 1), random(0, 2 + 1) + 1);
if (movingPoint_x < 8) {
movingPoint_x = 8 - movingPoint_x;
} else if (movingPoint_x >= 16) {
movingPoint_x = 22 - movingPoint_x;
} else {
movingPoint_x -= 8;
}
if (movingPoint_y < 8) {
movingPoint_y = 8 - movingPoint_y;
} else if (movingPoint_y >= 16) {
movingPoint_y = 22 - movingPoint_y;
} else {
movingPoint_y -= 8;
}
if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] < r) {
pixelR[xyToPos(movingPoint_x, movingPoint_y)]++;
} else if (pixelR[xyToPos(movingPoint_x, movingPoint_y)] > r) {
pixelR[xyToPos(movingPoint_x, movingPoint_y)]--;
}
if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] < g) {
pixelG[xyToPos(movingPoint_x, movingPoint_y)]++;
} else if (pixelG[xyToPos(movingPoint_x, movingPoint_y)] > g) {
pixelG[xyToPos(movingPoint_x, movingPoint_y)]--;
}
if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] < b) {
pixelB[xyToPos(movingPoint_x, movingPoint_y)]++;
} else if (pixelB[xyToPos(movingPoint_x, movingPoint_y)] > b) {
pixelB[xyToPos(movingPoint_x, movingPoint_y)]--;
}
}
movingPoint_x = startx;
movingPoint_y = starty;
for (int i = 0; i < numPixels(); i++) {
pixelR_buffer[i] = (Smoothing / 100.0) * pixelR[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelR, i, 0, 0);
pixelG_buffer[i] = (Smoothing / 100.0) * pixelG[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelG, i, 0, 0);
pixelB_buffer[i] = (Smoothing / 100.0) * pixelB[i] + (1.0 - (Smoothing / 100.0)) * getAverage(pixelB, i, 0, 0);
}
for (int i = 0; i < numPixels(); i++) {
pixelR[i] = pixelR_buffer[i];
pixelG[i] = pixelG_buffer[i];
pixelB[i] = pixelB_buffer[i];
setPixelColor(i, pixelR[i], pixelG[i], pixelB[i]);
}
show();
}
// Based upon https://github.com/johncarl81/neopixelplasma
void NeoPatterns::Plasma(float phase, float phaseIncrement, float colorStretch, uint8_t interval)
{
ActivePattern = PLASMA;
Interval = interval;
PlasmaPhase = phase;
PlasmaPhaseIncrement = phaseIncrement;
PlasmaColorStretch = colorStretch;
}
void NeoPatterns::PlasmaUpdate()
{
PlasmaPhase += PlasmaPhaseIncrement;
int edge = (int)sqrt(numPixels());
// The two points move along Lissajious curves, see: http://en.wikipedia.org/wiki/Lissajous_curve
// The sin() function returns values in the range of -1.0..1.0, so scale these to our desired ranges.
// The phase value is multiplied by various constants; I chose these semi-randomly, to produce a nice motion.
Point p1 = { (sin(PlasmaPhase * 1.000) + 1.0) * (edge / 2), (sin(PlasmaPhase * 1.310) + 1.0) * (edge / 2) };
Point p2 = { (sin(PlasmaPhase * 1.770) + 1.0) * (edge / 2), (sin(PlasmaPhase * 2.865) + 1.0) * (edge / 2) };
Point p3 = { (sin(PlasmaPhase * 0.250) + 1.0) * (edge / 2), (sin(PlasmaPhase * 0.750) + 1.0) * (edge / 2)};
byte row, col;
// For each row...
for ( row = 0; row < edge; row++ ) {
float row_f = float(row); // Optimization: Keep a floating point value of the row number, instead of recasting it repeatedly.
// For each column...
for ( col = 0; col < edge; col++ ) {
float col_f = float(col); // Optimization.
// Calculate the distance between this LED, and p1.
Point dist1 = { col_f - p1.x, row_f - p1.y }; // The vector from p1 to this LED.
float distance1 = sqrt( dist1.x * dist1.x + dist1.y * dist1.y );
// Calculate the distance between this LED, and p2.
Point dist2 = { col_f - p2.x, row_f - p2.y }; // The vector from p2 to this LED.
float distance2 = sqrt( dist2.x * dist2.x + dist2.y * dist2.y );
// Calculate the distance between this LED, and p3.
Point dist3 = { col_f - p3.x, row_f - p3.y }; // The vector from p3 to this LED.
float distance3 = sqrt( dist3.x * dist3.x + dist3.y * dist3.y );
// Warp the distance with a sin() function. As the distance value increases, the LEDs will get light,dark,light,dark,etc...
// You can use a cos() for slightly different shading, or experiment with other functions. Go crazy!
float color_1 = distance1; // range: 0.0...1.0
float color_2 = distance2;
float color_3 = distance3;
float color_4 = (sin( distance1 * distance2 * PlasmaColorStretch )) + 2.0 * 0.5;
// Square the color_f value to weight it towards 0. The image will be darker and have higher contrast.
color_1 *= color_1 * color_4;
color_2 *= color_2 * color_4;
color_3 *= color_3 * color_4;
color_4 *= color_4;
// Scale the color up to 0..7 . Max brightness is 7.
//strip.setPixelColor(col + (edge * row), strip.Color(color_4, 0, 0) );
setPixelColor(xyToPos(row, col), Color(color_1, color_2, color_3));
}
}
show();
}
/****************** Helper functions ******************/
void NeoPatterns::SetColor1(uint32_t color) {
Color1 = color;
}
void NeoPatterns::SetColor2(uint32_t color) {
Color2 = color;
}
// Calculate 50% dimmed version of a color (used by ScannerUpdate)
uint32_t NeoPatterns::DimColor(uint32_t color)
{
// Shift R, G and B components one bit to the right
uint32_t dimColor = Color(Red(color) >> 1, Green(color) >> 1, Blue(color) >> 1);
return dimColor;
}
// Set all pixels to a color (synchronously)
void NeoPatterns::ColorSet(uint32_t color)
{
for (int i = 0; i < numPixels(); i++)
{
setPixelColor(i, color);
}
show();
}
void NeoPatterns::ColorSetParameters(String parameters)
{
None();
ActivePattern = FILL;
ColorSet(parseColor(parameters));
}
// Returns the Red component of a 32-bit color
uint8_t NeoPatterns::Red(uint32_t color)
{
return (color >> 16) & 0xFF;
}
// Returns the Green component of a 32-bit color
uint8_t NeoPatterns::Green(uint32_t color)
{
return (color >> 8) & 0xFF;
}
// Returns the Blue component of a 32-bit color
uint8_t NeoPatterns::Blue(uint32_t color)
{
return color & 0xFF;
}
// Input a value 0 to 255 to get a color value.
// The colors are a transition r - g - b - back to r.
uint32_t NeoPatterns::Wheel(byte WheelPos)
{
WheelPos = 255 - WheelPos;
if (WheelPos < 85)
{
return Color(255 - WheelPos * 3, 0, WheelPos * 3);
}
else if (WheelPos < 170)
{
WheelPos -= 85;
return Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
else
{
WheelPos -= 170;
return Color(WheelPos * 3, 255 - WheelPos * 3, 0);
}
}
// Convert x y pixel position to matrix position
uint8_t NeoPatterns::xyToPos(int x, int y) {
if (y % 2 == 0) {
return (y * 8 + x);
} else {
return (y * 8 + (7 - x));
}
}
//convert pixel number to actual 8x8 matrix position
uint8_t NeoPatterns::numToPos(int num) {
int x = num % 8;
int y = num / 8;
return xyToPos(x, y);
}
// Convert pixel number to actual 8x8 matrix position in a spiral
uint8_t NeoPatterns::numToSpiralPos(int num) {
int edge = (int)sqrt(numPixels());
int findx = edge - 1; // 7
int findy = 0;
int stepsize = edge - 1; // initial value (0..7)
int stepnumber = 0; // each "step" should be used twice
int count = -1;
int dir = 1; // direction: 0 = incX, 1=incY, 2=decX, 3=decY
if (num < edge) {
return num; // trivial
}
for (int i = edge; i <= num; i++)
{
count++;
if (count == stepsize) {
count = 0;
// Change direction
dir++;
stepnumber++;
if (stepnumber == 2) {
stepsize -= 1;
stepnumber = 0;
}
if (dir == 4) {
dir = 0;
}
}
switch (dir) {
case 0:
findx++;
break;
case 1:
findy++;
break;
case 2:
findx--;
break;
case 3:
findy--;
break;
}
}
return xyToPos(findx, findy);
}
uint8_t NeoPatterns::getAverage(uint8_t array[], uint8_t i, int x, int y)
{
// TODO: This currently works only with 8x8 (64 pixel)!
uint16_t sum = 0;
uint8_t count = 0;
if (i >= 8) { //up
sum += array[i - 8];
count++;
}
if (i < (64 - 8)) { //down
sum += array[i + 8];
count++;
}
if (i >= 1) { //left
sum += array[i - 1];
count++;
}
if (i < (64 - 1)) { //right
sum += array[i + 1];
count++;
}
return sum / count;
}
uint32_t NeoPatterns::parseColor(String value) {
if (value.charAt(0) == '#') { //solid fill
String color = value.substring(1);
int number = (int) strtol( &color[0], NULL, 16);
// Split them up into r, g, b values
int r = number >> 16;
int g = number >> 8 & 0xFF;
int b = number & 0xFF;
return Color(r, g, b);
}
return 0;
}

107
NeoPatterns.h Normal file
View File

@ -0,0 +1,107 @@
#include <Adafruit_NeoPixel.h>
// Pattern types supported:
enum pattern { NONE, RAINBOW_CYCLE, THEATER_CHASE, COLOR_WIPE, SCANNER, FADE, RANDOM_FADE, SMOOTH, ICON, RANDOM_FADE_SINGLE, PLASMA, FILL, RANDOM };
// Patern directions supported:
enum direction { FORWARD, REVERSE };
class NeoPatterns : public Adafruit_NeoPixel
{
public:
NeoPatterns(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)());
void Update();
void Reverse();
void None(uint8_t interval = 40);
void Stop(uint8_t interval = 40);
void RainbowCycle(uint8_t interval, direction dir = FORWARD);
void RainbowCycleUpdate();
void TheaterChase(uint32_t color1, uint32_t color2, uint8_t interval, direction dir = FORWARD);
void TheaterChaseUpdate();
void ColorWipe(uint32_t color, uint8_t interval, direction dir = FORWARD);
void ColorWipeUpdate();
void Scanner(uint32_t color1 = 16711680, uint8_t interval = 40, bool colorful = false, bool spiral = false);
void ScannerUpdate();
void Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir = FORWARD);
void FadeUpdate();
void RandomFade(uint8_t interval = 100);
void RandomFadeUpdate();
void RandomFadeSingle(uint8_t interval = 100, uint8_t speed = 5);
void RandomFadeSingleUpdate();
void RandomBuffer();
void Random();
void Smooth(uint8_t wheelSpeed = 16, uint8_t smoothing = 80, uint8_t strength = 50, uint8_t interval = 40);
void SmoothUpdate();
void Plasma(float phase = 0, float phaseIncrement = 0.08, float colorStretch = 0.11, uint8_t interval = 60); // 0.08 and 0.11 // 0.03 und 0.3
void PlasmaUpdate();
void SetColor1(uint32_t color);
void SetColor2(uint32_t color);
//Utilities
void ColorSet(uint32_t color);
void ColorSetParameters(String parameters);
uint8_t Red(uint32_t color);
uint8_t Green(uint32_t color);
uint8_t Blue(uint32_t color);
uint32_t Wheel(byte WheelPos);
uint8_t numToSpiralPos(int num);
uint8_t xyToPos(int x, int y);
uint8_t numToPos(int num);
uint8_t getAverage(uint8_t array[], uint8_t i, int x, int y);
uint32_t parseColor(String value);
private:
// Member Variables:
pattern ActivePattern; // which pattern is running
pattern SavedPattern;
direction Direction; // direction to run the pattern
direction SavedDirection;
unsigned long Interval; // milliseconds between updates
unsigned long SavedInterval;
unsigned long lastUpdate; // last update of position
uint32_t Color1, Color2; // What colors are in use
uint32_t SavedColor1;
uint16_t TotalSteps; // total number of steps in the pattern
uint16_t SavedTotalSteps;
uint16_t Index; // current step within the pattern
uint16_t SavedIndex;
uint8_t Every; // Turn every "Every" pixel in Color1/Color2
byte wPos;
bool colorful;
bool spiral;
uint8_t wPosSlow;
uint8_t WheelSpeed;
uint8_t Smoothing;
uint8_t Strength;
uint8_t movingPoint_x;
uint8_t movingPoint_y;
uint8_t *pixelR;
uint8_t *pixelG;
uint8_t *pixelB;
uint8_t *pixelR_buffer;
uint8_t *pixelG_buffer;
uint8_t *pixelB_buffer;
float PlasmaPhase;
float SavedPlasmaPhase;
float PlasmaPhaseIncrement;
float SavedPlasmaPhaseIncrement;
float PlasmaColorStretch;
float SavedPlasmaColorStretch;
uint32_t DimColor(uint32_t color);
void Increment();
void (*OnComplete)(); // Callback on completion of pattern
// Convenient 2D point structure
struct Point {
float x;
float y;
};
};

View File

@ -2,6 +2,14 @@
#include <ArduinoOTA.h>
#include <Arduino.h>
#include <SoftwareSerial.h>
#include "NeoPatterns.h"
#define PIN D6
#define NUMPIXELS 81
NeoPatterns strip = NeoPatterns(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ400, &StripComplete);
// NeoPatterns strip = NeoPatterns(NUMPIXELS, PIN, NEO_RGB + NEO_KHZ400, &StripComplete);
HomieNode homieNode("pixel", "commands");
// Timeout, wann die Verbindung als "zurückgesetzt" angesehen werden soll und wieder auf das erste Byte gewartet wird
#define TIMEOUT 500
@ -18,6 +26,155 @@ String output2 = "";
HomieNode switchNode("switch", "switch");
void StripComplete(){
return;
}
bool onSetColor(const HomieRange& range, const String& value) {
if (!range.isRange || range.index < 0 || range.index > 1) {
return false;
}
switch (range.index) {
case 0:
strip.SetColor1(value.toInt());
break;
case 1:
strip.SetColor2(value.toInt());
break;
}
homieNode.setProperty("color_" + String(range.index)).send(value);
}
bool onSetPixel(const HomieRange& range, const String& value) {
if (!range.isRange) {
strip.None();
strip.ColorSet(value.toInt());
homieNode.setProperty("pixel").send(value);
return true;
}
if (range.index < 0 || range.index > strip.numPixels() - 1) {
return false;
}
strip.None();
strip.setPixelColor(range.index, value.toInt());
strip.show();
homieNode.setProperty("pixel_" + String(range.index)).send(value);
}
bool onSetBrightness(const HomieRange& range, const String& value) {
long brightness = value.toInt();
if (brightness < 0 || brightness > 255) {
return false;
}
strip.setBrightness(brightness);
strip.show();
homieNode.setProperty("brightness").send(value);
}
bool onSetPixels(const HomieRange& range, const String& value) {
String remaining = value;
int i = 0;
// Kein Effekt
strip.Stop();
do {
String current = remaining.substring(0, 7);
Homie.getLogger() << i << ":" << current << endl;
uint32_t currentcolor = strip.parseColor(current);
strip.setPixelColor(strip.numToPos(i), currentcolor);
i++;
remaining = remaining.substring(7);
} while (remaining.length() > 2 && (i < strip.numPixels()));
Homie.getLogger() << " filling rest with black" << endl;
while (i < strip.numPixels()) {
strip.setPixelColor(strip.numToPos(i), strip.Color(0, 0, 0));
i++;
}
strip.show();
return true;
}
bool onSetEffect(const HomieRange& range, const String& value) {
String effect = value;
effect.toLowerCase();
if (effect == "scanner") {
strip.Scanner(strip.Color(255, 0, 0));
}
else if (effect == "randomscanner") {
strip.Scanner(strip.Color(255, 0, 0), 40, true);
}
else if (effect == "larsonspiral") {
strip.Scanner(strip.Color(255, 0, 0), 40, true, true);
}
else if (effect == "rainbowcycle") {
strip.RainbowCycle(50);
}
else if (effect == "theaterchase" || effect == "chase") {
strip.TheaterChase(strip.Color(255, 0, 0), strip.Color(0, 0, 255), 100);
}
else if (effect == "fade") {
strip.Fade(strip.Color(255, 0, 0), strip.Color(0, 0, 255), 200, 100);
}
else if (effect == "randomfade") {
strip.RandomFade();
}
else if (effect == "random") {
strip.Random();
}
else if (effect == "smooth") { //example: smooth|[wheelspeed]|[smoothing]|[strength] wheelspeed=1-255, smoothing=0-100, strength=1-255
strip.Smooth(16, 80, 50, 40);
}
else if (effect == "plasma") {
strip.Plasma();
}
else {
// Test whether command with parameters was sent
int sep = value.indexOf("|");
String command = value.substring(0, sep);
String parameters = value.substring(sep + 1);
if (command.equals("fill")) {
strip.ColorSetParameters(parameters);
}
else if (command.equals("randomfade")) {
int sepparam = parameters.indexOf("|");
int p1 = parameters.substring(0, sepparam).toInt();
if (p1 <= 0) {
p1 = 5;
}
strip.RandomFadeSingle(p1);
}
else {
strip.None();
}
}
homieNode.setProperty("effect").send(value);
}
bool onSetClear(const HomieRange& range, const String& value) {
strip.None();
strip.clear();
strip.show();
homieNode.setProperty("clear").send(value);
}
bool onSetLength(const HomieRange& range, const String& value) {
strip.None();
strip.clear();
strip.show();
int newLength = value.toInt();
if (newLength > 0) {
strip.updateLength(newLength);
}
homieNode.setProperty("length").send(value);
}
bool switchHandler(const HomieRange& range, const String& value) {
Homie.getLogger() << "switch " << ": " << value << endl;
int localByte = 0;
@ -56,6 +213,11 @@ bool switchHandler(const HomieRange& range, const String& value) {
return true;
}
void loopHandler() {
strip.Update();
}
void setup() {
Serial.begin(115200);
swSer.begin(9600);
@ -64,10 +226,25 @@ void setup() {
Homie_setFirmware(FW_NAME, FW_VERSION);
Homie_setBrand(FW_NAME);
Homie.setLoopFunction(loopHandler);
switchNode.advertise("switch").settable(switchHandler);
homieNode.advertiseRange("pixel", 0, NUMPIXELS - 1).settable(onSetPixel);
homieNode.advertiseRange("color", 0, 1).settable(onSetColor);
homieNode.advertise("brightness").settable(onSetBrightness);
homieNode.advertise("effect").settable(onSetEffect);
homieNode.advertise("clear").settable(onSetClear);
homieNode.advertise("length").settable(onSetLength);
homieNode.advertiseRange("pixels", 0, (NUMPIXELS - 1)*7).settable(onSetPixels);
Homie.setup();
strip.begin();
strip.clear();
strip.show();
ArduinoOTA.setHostname(Homie.getConfiguration().deviceId);
ArduinoOTA.begin();
}
@ -75,7 +252,7 @@ void setup() {
void loop() {
Homie.loop();
ArduinoOTA.handle();
while (swSer.available() > 0) {
int r1 = swSer.read();
Serial.print(currentnumber);