crashtest-r0ket/firmware/lcd/display.c

504 lines
12 KiB
C

#include <string.h>
#include <display.h>
#include <sysdefs.h>
#include "lpc134x.h"
#include "core/ssp/ssp.h"
#include "gpio/gpio.h"
#include "basic/basic.h"
#include "basic/config.h"
#include "usb/usbmsc.h"
enum display_type {
DISPLAY_TYPE_N1200 = 0,
DISPLAY_TYPE_N1600 = 1,
};
enum command_type {
COMMAND_TYPE_CMD = 0,
COMMAND_TYPE_DATA = 1,
};
struct display_macro {
enum command_type type:1;
unsigned int data:8;
unsigned int delay_after:7;
} __attribute__((packed));
/* Small Nokia 1200 LCD docs:
* clear/ set
* on 0xae / 0xaf
* invert 0xa6 / 0xa7
* mirror-x 0xA0 / 0xA1
* mirror-y 0xc7 / 0xc8
*
* 0x20+x contrast (0=black - 0x2e)
* 0x40+x offset in rows from top (-0x7f)
* 0x80+x contrast? (0=black -0x9f?)
* 0xd0+x black lines from top? (-0xdf?)
*
*/
/* Decoded:
* E2: Internal reset
* AF: Display on/off: DON = 1
* A1: undefined?
* A4: all on/normal: DAL = 0
* 2F: charge pump on/off: PC = 1
* B0: set y address: Y[0-3] = 0
* 10: set x address (upper bits): X[6-4] = 0
*/
static const struct display_macro INIT_N1200[] = {
{COMMAND_TYPE_CMD, 0xE2, 5},
{COMMAND_TYPE_CMD, 0xAF},
{COMMAND_TYPE_CMD, 0xA1},
{COMMAND_TYPE_CMD, 0x2F},
{COMMAND_TYPE_CMD, 0xB0},
{COMMAND_TYPE_CMD, 0x10},
};
static const struct display_macro PREPARE_N1200[] = {
{COMMAND_TYPE_CMD, 0xB0},
{COMMAND_TYPE_CMD, 0x10},
{COMMAND_TYPE_CMD, 0x00},
};
/* Decoded:
* CMD 29: DISPON
* CMD BA: Data order (1)
* CMD 11: sleep out
* CMD 13: normal display mode on
* CMD 37: set scroll entry point
* DAT 00: scroll entry point
* CMD 3A: interface pixel format
* DAT 05: 16 bit/pixel
* CMD 2A: column address set
* DAT 0 : xs
* DAT 98-1 : xe
* CMD 2B: page address set
* DAT 0 : ys
* DAT 70-1 : ye
*/
static const struct display_macro INIT_N1600[] = {
{COMMAND_TYPE_CMD, 0x01, 10},
{COMMAND_TYPE_CMD, 0x29},
{COMMAND_TYPE_CMD, 0xBA},
{COMMAND_TYPE_CMD, 0x11},
{COMMAND_TYPE_CMD, 0x13},
{COMMAND_TYPE_CMD, 0x37},
{COMMAND_TYPE_DATA, 0x00},
{COMMAND_TYPE_CMD, 0x3A},
{COMMAND_TYPE_DATA, 0x05},
{COMMAND_TYPE_CMD, 0x2A},
{COMMAND_TYPE_DATA, 0x00},
{COMMAND_TYPE_DATA, 98-1},
{COMMAND_TYPE_CMD, 0x2B},
{COMMAND_TYPE_DATA, 0},
{COMMAND_TYPE_DATA, 70-1},
};
static const struct display_macro PREPARE_N1600[] = {
{COMMAND_TYPE_CMD, 0x2C},
};
struct display_descriptor {
/* Macro to execute in order to initialize the display from scratch */
const struct display_macro * init_macro;
int init_macro_length;
/* Macro to execute to prepare the display for sending raw contents */
const struct display_macro * prepare_macro;
int prepare_macro_length;
};
const struct display_descriptor DISPLAY_DESCRIPTORS[] = {
[DISPLAY_TYPE_N1200] = {
INIT_N1200, sizeof(INIT_N1200)/sizeof(INIT_N1200[0]),
PREPARE_N1200, sizeof(PREPARE_N1200)/sizeof(PREPARE_N1200[0])
},
[DISPLAY_TYPE_N1600] = {
INIT_N1600, sizeof(INIT_N1600)/sizeof(INIT_N1600[0]),
PREPARE_N1600, sizeof(PREPARE_N1600)/sizeof(PREPARE_N1600[0])
},
};
/**************************************************************************/
/* Utility routines to manage nokia display */
/**************************************************************************/
uint8_t lcdBuffer[RESX*RESY_B];
uint32_t intstatus; // Caches USB interrupt state
// (need to disable MSC while displaying)
enum display_type displayType;
const struct display_descriptor *displayDescriptor;
static void lcd_select() {
#if CFG_USBMSC
if(usbMSCenabled){
intstatus=USB_DEVINTEN;
USB_DEVINTEN=0;
};
#endif
/* the LCD requires 9-Bit frames */
uint32_t configReg = ( SSP_SSP0CR0_DSS_9BIT // Data size = 9-bit
| SSP_SSP0CR0_FRF_SPI // Frame format = SPI
| SSP_SSP0CR0_SCR_8); // Serial clock rate = 8
SSP_SSP0CR0 = configReg;
gpioSetValue(RB_LCD_CS, 0);
}
static void lcd_deselect() {
gpioSetValue(RB_LCD_CS, 1);
/* reset the bus to 8-Bit frames that everyone else uses */
uint32_t configReg = ( SSP_SSP0CR0_DSS_8BIT // Data size = 8-bit
| SSP_SSP0CR0_FRF_SPI // Frame format = SPI
| SSP_SSP0CR0_SCR_8); // Serial clock rate = 8
SSP_SSP0CR0 = configReg;
#if CFG_USBMSC
if(usbMSCenabled){
USB_DEVINTEN=intstatus;
};
#endif
}
static void lcdWrite(uint8_t cd, uint8_t data) {
uint16_t frame = 0x0;
frame = cd << 8;
frame |= data;
while ((SSP_SSP0SR & (SSP_SSP0SR_TNF_NOTFULL | SSP_SSP0SR_BSY_BUSY)) != SSP_SSP0SR_TNF_NOTFULL);
SSP_SSP0DR = frame;
while ((SSP_SSP0SR & (SSP_SSP0SR_BSY_BUSY|SSP_SSP0SR_RNE_NOTEMPTY)) != SSP_SSP0SR_RNE_NOTEMPTY);
/* clear the FIFO */
frame = SSP_SSP0DR;
}
#define CS 2,1
#define SCK 2,11
#define SDA 0,9
#define RST 2,2
uint8_t lcdRead(uint8_t data)
{
uint32_t op211cache=IOCON_PIO2_11;
uint32_t op09cache=IOCON_PIO0_9;
uint32_t dircache=GPIO_GPIO2DIR;
IOCON_PIO2_11=IOCON_PIO2_11_FUNC_GPIO|IOCON_PIO2_11_MODE_PULLUP;
IOCON_PIO0_9=IOCON_PIO0_9_FUNC_GPIO|IOCON_PIO0_9_MODE_PULLUP;
gpioSetDir(SCK, 1);
uint8_t i;
gpioSetDir(SDA, 1);
gpioSetValue(SCK, 0);
gpioSetValue(CS, 0);
delayms(1);
gpioSetValue(SDA, 0);
gpioSetValue(SCK, 1);
delayms(1);
for(i=0; i<8; i++){
gpioSetValue(SCK, 0);
delayms(1);
if( data & 0x80 )
gpioSetValue(SDA, 1);
else
gpioSetValue(SDA, 0);
data <<= 1;
gpioSetValue(SCK, 1);
delayms(1);
}
uint8_t ret = 0;
gpioSetDir(SDA, 0);
for(i=0; i<8; i++){
gpioSetValue(SCK, 0);
delayms(1);
ret <<= 1;
ret |= gpioGetValue(SDA);
gpioSetValue(SCK, 1);
delayms(1);
}
gpioSetValue(SCK, 0);
gpioSetValue(CS, 1);
gpioSetDir(SDA, 1);
IOCON_PIO2_11=op211cache;
IOCON_PIO0_9=op09cache;
GPIO_GPIO2DIR=dircache;
delayms(1);
return ret;
}
static void lcdExecuteMacro(const struct display_macro *macro, int macro_length)
{
for(int i=0; i<macro_length; i++) {
lcdWrite(macro[i].type, macro[i].data);
delayms(macro[i].delay_after);
}
}
void lcdInit(void) {
int id;
sspInit(0, sspClockPolarity_Low, sspClockPhase_RisingEdge);
gpioSetValue(RB_LCD_CS, 1);
gpioSetValue(RB_LCD_RST, 1);
gpioSetDir(RB_LCD_CS, gpioDirection_Output);
gpioSetDir(RB_LCD_RST, gpioDirection_Output);
delayms(100);
gpioSetValue(RB_LCD_RST, 0);
delayms(100);
gpioSetValue(RB_LCD_RST, 1);
delayms(100);
id=lcdRead(220); // ID3
if(id==14)
displayType=DISPLAY_TYPE_N1600;
else /* ID3 == 48 */
displayType=DISPLAY_TYPE_N1200;
displayDescriptor = DISPLAY_DESCRIPTORS + displayType;
lcd_select();
lcdExecuteMacro(displayDescriptor->init_macro, displayDescriptor->init_macro_length);
lcd_deselect();
}
void lcdFill(char f){
memset(lcdBuffer,f,RESX*RESY_B);
#if 0
int x;
for(x=0;x<RESX*RESY_B;x++) {
lcdBuffer[x]=f;
}
#endif
};
void lcdSetPixel(char x, char y, bool f){
if (x<0 || x> RESX || y<0 || y > RESY)
return;
char y_byte = (RESY-(y+1)) / 8;
char y_off = (RESY-(y+1)) % 8;
char byte = lcdBuffer[y_byte*RESX+(RESX-(x+1))];
if (f) {
byte |= (1 << y_off);
} else {
byte &= ~(1 << y_off);
}
lcdBuffer[y_byte*RESX+(RESX-(x+1))] = byte;
}
bool lcdGetPixel(char x, char y){
char y_byte = (RESY-(y+1)) / 8;
char y_off = (RESY-(y+1)) % 8;
char byte = lcdBuffer[y_byte*RESX+(RESX-(x+1))];
return byte & (1 << y_off);
}
// Color display hepler functions
static void _helper_pixel16(uint16_t color){
lcdWrite(COMMAND_TYPE_DATA,color>>8);
lcdWrite(COMMAND_TYPE_DATA,color&0xFF);
}
static void _helper_hline(uint16_t color){
for(int cx=0;cx<98;cx++)
_helper_pixel16(color);
}
#define COLORPACK_RGB565(r,g,b) (((r&0xF8) << 8) | ((g&0xFC)<<3) | ((b&0xF8) >> 3))
static const uint16_t COLOR_FG = COLORPACK_RGB565(0x00, 0x60, 0x00);
static const uint16_t COLOR_BG = COLORPACK_RGB565(0xff, 0xff, 0xff);
static const uint16_t COLOR_FRAME = COLORPACK_RGB565(0x00, 0x00, 0x80);
void lcdDisplay(void) {
char byte;
lcd_select();
lcdExecuteMacro(displayDescriptor->prepare_macro, displayDescriptor->prepare_macro_length);
if(displayType==DISPLAY_TYPE_N1200){
uint16_t i,page;
for(page=0; page<RESY_B;page++) {
for(i=0; i<RESX; i++) {
if (GLOBAL(lcdmirror))
byte=lcdBuffer[page*RESX+RESX-1-(i)];
else
byte=lcdBuffer[page*RESX+(i)];
if (GLOBAL(lcdinvert))
byte=~byte;
lcdWrite(COMMAND_TYPE_DATA,byte);
}
}
} else { /* displayType==DISPLAY_TYPE_N1600 */
uint16_t x,y;
bool px;
//top line of the frame...
_helper_hline(COLOR_FRAME);
for(y=RESY;y>0;y--){
//left line of the frame
_helper_pixel16(COLOR_FRAME);
for(x=RESX;x>0;x--){
if(GLOBAL(lcdmirror))
px=lcdGetPixel(RESX-x+1,y-1);
else
px=lcdGetPixel(x-1,y-1);
if((!px)^(!GLOBAL(lcdinvert))) {
_helper_pixel16(COLOR_FG); /* foreground */
} else {
_helper_pixel16(COLOR_BG); /* background */
}
}
//right line of the frame
_helper_pixel16(COLOR_FRAME);
}
//bottom line of the frame
_helper_hline(COLOR_FRAME);
}
lcd_deselect();
}
void lcdRefresh() __attribute__ ((weak, alias ("lcdDisplay")));
inline void lcdInvert(void) {
GLOBAL(lcdinvert)=!GLOBAL(lcdinvert);
}
void lcdSetContrast(int c) {
lcd_select();
if(displayType==DISPLAY_TYPE_N1200){
if(c<0x1F)
lcdWrite(COMMAND_TYPE_CMD,0x80+c);
}else{ /* displayType==DISPLAY_TYPE_N1600 */
if(c<0x40) {
lcdWrite(COMMAND_TYPE_CMD,0x25);
lcdWrite(COMMAND_TYPE_DATA,4*c);
};
}
lcd_deselect();
};
void lcdSetInvert(int c) {
lcd_select();
/* it doesn't harm N1600, save space */
// if(displayType==DISPLAY_N1200)
lcdWrite(COMMAND_TYPE_CMD,(c&1)+0xa6);
lcd_deselect();
};
/* deprecated */
void __attribute__((__deprecated__)) lcdToggleFlag(int flag) {
if(flag==LCD_MIRRORX)
GLOBAL(lcdmirror)=!GLOBAL(lcdmirror);
if(flag==LCD_INVERTED)
GLOBAL(lcdinvert)=!GLOBAL(lcdinvert);
}
void lcdShiftH(bool right, bool wrap) {
uint8_t tmp;
for (int yb = 0; yb<RESY_B; yb++) {
if (right) {
tmp = lcdBuffer[yb*RESX];
memmove(lcdBuffer + yb*RESX,lcdBuffer + yb*RESX+1 ,RESX-1);
lcdBuffer[yb*RESX+(RESX-1)] = wrap?tmp:0;
} else {
tmp = lcdBuffer[yb*RESX+(RESX-1)];
memmove(lcdBuffer + yb*RESX+1,lcdBuffer + yb*RESX ,RESX-1);
lcdBuffer[yb*RESX] = wrap?tmp:0;
}
}
}
void lcdShiftV8(bool up, bool wrap) {
uint8_t tmp[RESX];
if (!up) {
if (wrap)
memmove(tmp, lcdBuffer, RESX);
else
memset(tmp,0,RESX);
memmove(lcdBuffer,lcdBuffer+RESX ,RESX*(RESY_B-1));
memmove(lcdBuffer+RESX*(RESY_B-1),tmp,RESX);
} else {
if (wrap)
memmove(tmp, lcdBuffer+RESX*(RESY_B-1), RESX);
else
memset(tmp,0,RESX);
memmove(lcdBuffer+RESX,lcdBuffer ,RESX*(RESY_B-1));
memmove(lcdBuffer,tmp,RESX);
}
}
void lcdShiftV(bool up, bool wrap) {
uint8_t tmp[RESX];
if (up) {
if (wrap)
memmove(tmp,lcdBuffer+((RESY_B-1)*RESX),RESX);
else
memset(tmp,0,RESX);
for (int x = 0; x<RESX; x++){
for (int y = RESY_B-1; y > 0; y--){
lcdBuffer[x+(y*RESX)] = (lcdBuffer[x+(y*RESX)] << 1) |( lcdBuffer[x+((y-1)*RESX)] >> 7);
}
lcdBuffer[x] = ( lcdBuffer[x] << 1) | ((tmp[x]>>3)&1);
}
} else {
if (wrap)
memmove(tmp,lcdBuffer,RESX);
else
memset(tmp,0,RESX);
for (int x = 0; x<RESX; x++){
for (int y = 0; y < (RESY_B-1); y++){
lcdBuffer[x+(y*RESX)] = (lcdBuffer[x+(y*RESX)] >> 1) |( lcdBuffer[x+((y+1)*RESX)] << 7);
}
lcdBuffer[x+((RESY_B-1)*RESX)] = ( lcdBuffer[x+((RESY_B-1)*RESX)] >> 1) | ((tmp[x]<<3)&8);
}
}
}
void lcdShift(int x, int y, bool wrap) {
bool dir=true;
if(x<0){
dir=false;
x=-x;
};
while(x-->0)
lcdShiftH(dir, wrap);
if(y<0){
dir=false;
y=-y;
}else{
dir=true;
};
while(y>=8){
y-=8;
lcdShiftV8(dir, wrap);
};
while(y-->0)
lcdShiftV(dir, wrap);
}