fpmath_patterns.c: fixed some bugs which made the higher precision mode
unusable; animations look slightly different, now
This commit is contained in:
parent
3a5052900d
commit
1dff4f3885
1 changed files with 54 additions and 52 deletions
|
@ -20,18 +20,20 @@
|
|||
|
||||
#ifdef DOXYGEN
|
||||
/**
|
||||
* Low precision means that we use Q10.5 values and 16 bit types for almost
|
||||
* every calculation (with multiplication and division as notable exceptions
|
||||
* as they and their interim results utilize 32 bit).
|
||||
* Low precision means that we use Q9.6 values and 16 bit types for almost
|
||||
* every calculation (with multiplication being a notable exception as its
|
||||
* interim results utilize 32 bit types).
|
||||
*
|
||||
* Use this precision mode with care as image quality will suffer
|
||||
* noticeably. It produces leaner and faster code, though. This mode should
|
||||
* not be used with resolutions higher than 16x16 as overflows are likely to
|
||||
* occur in interim calculations.
|
||||
* Use this precision mode with care as image quality will suffer noticeably
|
||||
* at higher resolutions. This mode should not be used with resolutions
|
||||
* higher than 16x16 as overflows are likely to occur in interim
|
||||
* calculations. It produces leaner and faster code, though.
|
||||
*
|
||||
* Normal precision (i.e. #undef LOW_PRECISION) conforms to Q7.8 with the
|
||||
* ability to store every interim result as Q23.8. Most operations like
|
||||
* square root, sine, cosine, multiplication etc. utilize 32 bit types.
|
||||
* Normal precision (i.e. #undef LOW_PRECISION) conforms to Q23.8 for actual
|
||||
* values and interim results. Operations like square root, sine, cosine,
|
||||
* multiplication etc. utilize 32 bit types. It's extremly slow on AVR, but
|
||||
* it's your only chance to run those animations on devices with resolutions
|
||||
* higher than 16x16.
|
||||
*/
|
||||
#define FP_LOW_PRECISION
|
||||
#endif /* DOXYGEN */
|
||||
|
@ -66,18 +68,18 @@
|
|||
// lookup table as well!
|
||||
|
||||
/** Multiply a number by this factor to convert it to a fixed-point value.*/
|
||||
#define FIX 32
|
||||
#define FIX 64
|
||||
/** Number of fractional bits of a value (i.e. ceil(log_2(FIX))). */
|
||||
#define FIX_FRACBITS 5
|
||||
#define FIX_FRACBITS 6
|
||||
/**
|
||||
* The number of temporal quantization steps of the sine lookup table. It
|
||||
* must be a divisor of (FIX * 2 * pi) and this divisor must be divisable by
|
||||
* 4 itself. Approximate this value as close as possible to keep rounding
|
||||
* errors at a minimum.
|
||||
*/
|
||||
#define FIX_SIN_COUNT 200
|
||||
#define FIX_SIN_COUNT 200u
|
||||
/** The rounded down quotient of (FIX * 2 * pi) and FIX_SIN_COUNT */
|
||||
#define FIX_SIN_DIVIDER 1
|
||||
#define FIX_SIN_DIVIDER 2u
|
||||
|
||||
/** Type of the lookup table elements. */
|
||||
typedef uint8_t lut_t;
|
||||
|
@ -85,26 +87,26 @@
|
|||
/**
|
||||
* Lookup table of fractional parts which model the first quarter of a
|
||||
* sine period. The rest of that period is calculated by mirroring those
|
||||
* values. These values are intended for Q5 types.
|
||||
* values. These values are intended for Q6 types.
|
||||
*/
|
||||
static lut_t const fix_sine_lut[FIX_SIN_COUNT / 4] =
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7,
|
||||
8, 9, 10, 11, 12, 13, 14, 14,
|
||||
15, 16, 17, 18, 19, 20, 20, 21,
|
||||
22, 23, 23, 24, 25, 25, 26, 26,
|
||||
27, 27, 28, 28, 29, 29, 30, 30,
|
||||
30, 31, 31, 31, 31, 32, 32, 32,
|
||||
32, 32};
|
||||
{ 0, 2, 4, 6, 8, 10, 12, 14,
|
||||
16, 18, 20, 22, 24, 25, 27, 29,
|
||||
31, 33, 34, 36, 38, 39, 41, 42,
|
||||
44, 45, 47, 48, 49, 51, 52, 53,
|
||||
54, 55, 56, 57, 58, 59, 60, 60,
|
||||
61, 61, 62, 62, 63, 63, 63, 64,
|
||||
64, 64};
|
||||
|
||||
#else
|
||||
/** This is the type we expect ordinary integers to be. */
|
||||
typedef int16_t ordinary_int_t;
|
||||
/** This is the type which we use for fixed-point values. */
|
||||
typedef int16_t fixp_t;
|
||||
typedef int32_t fixp_t;
|
||||
/** This type covers arguments of fixSin() and fixCos(). */
|
||||
typedef int32_t fixp_trig_t;
|
||||
/** This type covers interim results of fixed-point operations. */
|
||||
typedef int32_t fixp_interim_t;
|
||||
typedef uint32_t fixp_interim_t;
|
||||
/** This type covers interim results of the fixSqrt() function. */
|
||||
typedef uint32_t ufixp_interim_t;
|
||||
/** Number of bits the fixSqrt() function can handle. */
|
||||
|
@ -123,12 +125,12 @@
|
|||
* 4 itself. Approximate this value as close as possible to keep rounding
|
||||
* errors at a minimum.
|
||||
*/
|
||||
#define FIX_SIN_COUNT 200
|
||||
#define FIX_SIN_COUNT 200u
|
||||
/** The rounded down quotient of (FIX * 2 * pi) and FIX_SIN_COUNT */
|
||||
#define FIX_SIN_DIVIDER 8
|
||||
#define FIX_SIN_DIVIDER 8u
|
||||
|
||||
/** Type of the lookup table elements. */
|
||||
typedef uint8_t lut_t;
|
||||
typedef int16_t lut_t;
|
||||
|
||||
/**
|
||||
* Lookup table of fractional parts which model the first quarter of a
|
||||
|
@ -142,7 +144,7 @@
|
|||
175, 181, 186, 192, 197, 202, 207, 211,
|
||||
216, 220, 224, 228, 231, 235, 238, 240,
|
||||
243, 245, 247, 249, 251, 252, 253, 254,
|
||||
255, 255};
|
||||
255, 256};
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -252,14 +254,14 @@ static fixp_t fixSin(fixp_trig_t fAngle)
|
|||
|
||||
/**
|
||||
* Fixed-point variant of the cosine function which takes a fixed-point angle
|
||||
* (radian). It adds FIX_PI_2 to the given angle and consults the fixSin()
|
||||
* function for the final result.
|
||||
* (radian). It substracts FIX_PI_2 from the given angle and consults the
|
||||
* fixSin() function for the final result.
|
||||
* @param fAngle A fixed-point value in radian.
|
||||
* @return Result of the cosine function normalized to a range from -FIX to FIX.
|
||||
*/
|
||||
static fixp_t fixCos(fixp_trig_t const fAngle)
|
||||
static inline fixp_t fixCos(fixp_trig_t const fAngle)
|
||||
{
|
||||
return fixSin(fAngle + FIX_PI_2);
|
||||
return fixSin(fAngle - FIX_PI_2);
|
||||
}
|
||||
|
||||
|
||||
|
@ -275,11 +277,11 @@ static fixp_t fixSqrt(ufixp_interim_t const a)
|
|||
nRoot = 0; // clear root
|
||||
nRemainingHigh = 0; // clear high part of partial remainder
|
||||
nRemainingLow = a; // get argument into low part of partial remainder
|
||||
nCount = (SQRT_BITS / 2 - 1) + (FIX_FRACBITS >> 1); // load loop counter
|
||||
nCount = ((SQRT_BITS - 1) + FIX_FRACBITS) / 2; // load loop counter
|
||||
do
|
||||
{
|
||||
nRemainingHigh =
|
||||
(nRemainingHigh << 2) | (nRemainingLow >> (SQRT_BITS - 2));
|
||||
(nRemainingHigh << 2) | (nRemainingLow >> (SQRT_BITS - 2));
|
||||
nRemainingLow <<= 2; // get 2 bits of the argument
|
||||
nRoot <<= 1; // get ready for the next bit in the root
|
||||
nTestDiv = (nRoot << 1) + 1; // test radical
|
||||
|
@ -451,16 +453,16 @@ static unsigned char fixAnimPlasma(unsigned char const x,
|
|||
assert(x < (LINEBYTES * 8));
|
||||
assert(y < NUM_ROWS);
|
||||
|
||||
// scaling factor
|
||||
static fixp_t const fPlasmaX = (2 * PI * FIX) / NUM_COLS;
|
||||
|
||||
// reentrant data
|
||||
fixp_plasma_t *const p = (fixp_plasma_t *)r;
|
||||
|
||||
// scaling factor
|
||||
static fixp_t const fPlasmaX = FIX / 3.7;
|
||||
|
||||
if (x == 0 && y == 0)
|
||||
{
|
||||
p->fFunc2CosArg = NUM_ROWS * fixCos(t) + fixScaleUp(NUM_ROWS);
|
||||
p->fFunc2SinArg = NUM_COLS * fixSin(t) + fixScaleUp(NUM_COLS);
|
||||
p->fFunc2CosArg = NUM_COLS * (fixCos(t) + FIX);
|
||||
p->fFunc2SinArg = NUM_ROWS * (fixSin(t) + FIX);
|
||||
for (unsigned char i = LINEBYTES * 8u; i--;)
|
||||
{
|
||||
p->fFunc1[i] = fixSin(fixMul(fixScaleUp(i), fPlasmaX) + t);
|
||||
|
@ -470,8 +472,8 @@ static unsigned char fixAnimPlasma(unsigned char const x,
|
|||
fixp_t const fFunc2 = fixSin(fixMul(fixDist(fixScaleUp(x), fixScaleUp(y),
|
||||
p->fFunc2SinArg, p->fFunc2CosArg), fPlasmaX));
|
||||
|
||||
unsigned char const nRes = (unsigned char)(fixMul(p->fFunc1[x] + fFunc2 +
|
||||
fixScaleUp(2), ((NUMPLANE + 1) / 4.0 - 0.05) * FIX)) / FIX;
|
||||
unsigned char const nRes = (fixMul(p->fFunc1[x] + fFunc2 +
|
||||
2 * FIX, ((NUMPLANE + 1) / 4.0 - 0.05) * FIX)) / FIX;
|
||||
assert (nRes <= NUMPLANE);
|
||||
|
||||
return nRes;
|
||||
|
@ -484,12 +486,12 @@ void plasma(void)
|
|||
{
|
||||
fixp_plasma_t r;
|
||||
#ifndef __AVR__
|
||||
fixDrawPattern(0, fixScaleUp(75), 0.1 * FIX, 15, fixAnimPlasma, &r);
|
||||
fixDrawPattern(0, fixScaleUp(75), 0.05 * FIX, 15, fixAnimPlasma, &r);
|
||||
#else
|
||||
#ifndef FP_PLASMA_DELAY
|
||||
#define FP_PLASMA_DELAY 1
|
||||
#endif
|
||||
fixDrawPattern(0, fixScaleUp(60), 0.1 * FIX,
|
||||
fixDrawPattern(0, fixScaleUp(60), 0.05 * FIX,
|
||||
FP_PLASMA_DELAY, fixAnimPlasma, &r);
|
||||
#endif /* __AVR__ */
|
||||
}
|
||||
|
@ -505,9 +507,9 @@ void plasma(void)
|
|||
*/
|
||||
typedef struct fixp_psychedelic_s
|
||||
{
|
||||
fixp_t fCos; /**< One of the column factors of the curl. */
|
||||
fixp_t fSin; /**< One of the row factors of the curl. */
|
||||
fixp_interim_t ft10; /**< A value involved in rotating the curl's center. */
|
||||
fixp_t fCos; /**< X-coordinate of the curl's center. */
|
||||
fixp_t fSin; /**< Y-coordinate of the curl's center. */
|
||||
fixp_t fPhaseShift; /**< Phase-shift for the flow effect. */
|
||||
} fixp_psychedelic_t;
|
||||
|
||||
|
||||
|
@ -530,15 +532,15 @@ static unsigned char fixAnimPsychedelic(unsigned char const x,
|
|||
|
||||
if (x == 0 && y == 0)
|
||||
{
|
||||
p->fCos = NUM_COLS/2 * fixCos(t);
|
||||
p->fSin = NUM_ROWS/2 * fixSin(t);
|
||||
p->ft10 = fixMul(t, fixScaleUp(10));
|
||||
p->fCos = (fixp_t)(NUM_COLS * 0.72) * (fixCos(t) + FIX);
|
||||
p->fSin = (fixp_t)(NUM_ROWS * 0.72) * (fixSin(t) + FIX);
|
||||
p->fPhaseShift = t * 8;
|
||||
}
|
||||
|
||||
unsigned char const nResult =
|
||||
(unsigned char)(fixMul(fixSin(fixDist(fixScaleUp(x), fixScaleUp(y),
|
||||
p->fCos, p->fSin) - p->ft10) + fixScaleUp(1),
|
||||
(fixp_t)((NUMPLANE - 1.05) * FIX))) / FIX;
|
||||
fixMul(fixSin(fixDist(fixScaleUp(x), fixScaleUp(y),
|
||||
p->fSin, p->fCos) - p->fPhaseShift) + FIX,
|
||||
(fixp_t)((NUMPLANE - 1.05) * FIX)) / FIX;
|
||||
assert(nResult <= NUMPLANE);
|
||||
|
||||
return nResult;
|
||||
|
|
Loading…
Reference in a new issue